
Retroactively estimating system clock skew
from stored web browser cookies

Wicher Minnaard (wicher.minnaard@os3.nl)

March 19, 2013

A person with one watch knows what time it is;
a person with two watches is never sure.

Abstract

Cookies as stored by web browsers can provide a record of local system
clock skew. Deriving this clock skew is fraught with difficulties. By taking
probability into account and by applying statistics derived from empirical data,
it becomes feasible to estimate skew in spite of many uncertainties and pitfalls
inherent in the mechanisms involved.

This research project report presents the considerations that need to be
taken into account when deriving skew from web browser cookies. It is ac-
companied by open source software that implements the algorithms proposed.

1

Contents
1 Introduction 3

1.1 Rationale . 3
1.2 Research goals . 4

2 Method for deriving skew from web cookies 6
2.1 External time carried in cookie expiry information . . . 6
2.2 Exploiting expiry information 7
2.3 Caveats . 9

3 Creating a database of server deltas 12
3.1 Shodan: A web server reply corpus 12
3.2 Representativeness and shortcomings 12
3.3 Sanitizing input data 13
3.4 Applications of the database 14

4 The skew estimation algorithm 17
4.1 Description of inputs 17
4.2 Dealing with imprecision 17
4.3 Forming hypotheses – A voting system 18
4.4 Ranking hypotheses – Weighted voting 19

5 Implementation 20
5.1 The program interface 20
5.2 An example run . 21

6 Discussion: Algorithm performance 24
6.1 Basic performance evaluation 24
6.2 Exploring complex properties 25
6.3 Avenues for improvement 31

7 Conclusion 32

2

1 Introduction
This research project report and associated software1 are the result of a one-month
effort to create and automate a forensic method for retroactively determining a
system clock skew record of some end-user system, by using web cookies found on
that same system and comparing them with a collection of cookies retrieved from
public web servers.

1.1 Rationale
The reliability of time stamps plays an important role in forensic investigations.
Time stamps are used to determine the relative ordering of associated events and
to correlate these events with other events that are external to the system. Knowing
if (and by how much, and when) the clock that was used in setting time stamps
was skewed with respect to other clocks can be critical.

The importance of knowing such a skew deserves to be illustrated:
John is a suspect in a fraud case – supposedly, he has tampered with the electronic
cash register (PC software) in the grocery shop where he is employed. John claims
that he did no such thing and that some other person working the next shift must
have been responsible.
A forensic investigation of security camera footage shows John leaving the store
premises at 13:00. The investigation also shows that the fraudulent records were
timestamped 13:03.

The question is obvious: what was the skew of the PC’s clock (which has set the
record timestamps) with respect to the clock of the security camera (which has set
the video footage timestamps) ?

CERT advises first responders to register system clock skew when collecting evi-
dence. [5, section 3.9.1.2] Unfortunately, this will only provide the forensic examiner
with knowledge of the skew at evidence collection time. To extrapolate that skew
to a point in time months or years prior to capture is a far stretch.

Using his experience and implicit notions of what he considers ‘likely’, a forensic
examiner might arrive at a conviction of the relative order of events. Such personal
convictions might suffice for an internal investigation – e.g. to find out in which
way some system was breached – but they do not hold up in criminal court, where it
may come to the point that some relative order of events has to be proven beyond
reasonable doubt. Boyd and Forster note the attention time information receives in
court:

Date and time evidence is a fundamental part of many forensic
computing examinations. Forensic examiners know that lawyers are
often drawn to dates and times because they represent a concrete link
between the real world and the less easily understood world of computer

1Available at http://nontrivialpursuit.org/cookieskewer/cookieskewer.tar.gz. This
software is meant for research purposes and is not designed with production purposes in mind.

3

http://nontrivialpursuit.org/cookieskewer/cookieskewer.tar.gz

evidence. Experienced examiners know that date and time evidence
is not simple and contains many potential pitfalls. Usually the more
knowledge and experience that an examiner possesses the less they are
willing to commit to a particular time or date. They will always try and
look at the fuller picture seeking corroboration or verification of their
findings. [2]

What is needed is a historical record of offsets against some reference clock. Ideally,
system logs contain such information2 – see listing 1 on the following page for an
example of such a log. Lacking an accurate record, forensic investigations dealing
with time information often turn to other, less perfect traces of time information
set by clocks external to the system.

As it happens, many systems are not run in isolation. Network protocols may
carry time information as part of a mechanism employed to maintain state or caches.
A prime example of such a protocol is HTTP. It is pervasive due to the widespread
use of the world wide web. The storage mechanisms that HTTP clients employ to
maintain state and caches make traces of external time prevalent on many end-user
systems, ranging from laptops to smartphones.

1.2 Research goals
The research goals that follow from the rationale are straightforward:

1. Determine to what extent the mechanisms that are involved in the HTTP
state mechanism allow the web client cookie store to be used for estimating
skew. What are the caveats and how can they be dealt with?

2. Devise an automated method that, given a web cookie collection and a
database of cookie characteristics, arrives at an estimate of clock skew. Im-
plement a prototype.

3. Evaluate the method.

The structure of the remainder of this report is as follows:

� Sections 2 and 3 address goal #1.
Surveying and classifying empirically gathered data has taken up a major part
of the effort spent on this project.

� Sections 4 and 5 address goal #2.
Coming up with an algorithm and building software has taken up another
major part of the effort.

� Section 6 addresses goal #1 and #3.
Arguably, this is where the most important question – “can it be done?” – will
need to be answered. The short answer is “yes” – initial results are promising.
Many questions addressing the limits of the approach remain unanswered,
though not unmentioned.

2Those logs could be tampered with, so one would still like to corroborate them with other
sources of time information.

4

Listing 1: Example of an NTP log from a GNU/Linux system running OpenNTPD.
It contains a fairly fine-grained historical record of time skews, and mentions the
external time sources it has synced up with.
Jan 31 10 : 43 : 29 [ntpd] pee r 96 . 226 . 123 . 84 now v a l i d
Jan 31 10 : 51 : 23 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.597745 s
Jan 31 11 : 00 : 32 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.377247 s
Jan 31 11 : 00 : 32 [ntpd] c l o c k i s now unsynced
Jan 31 11 : 04 : 48 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.214659 s
Feb 05 11 : 14 : 26 [ntpd] a d j u s t i n g l o c a l c l o c k by 2.033003 s
Feb 05 11 : 18 : 49 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.945286 s
Feb 05 11 : 23 : 04 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.823792 s
Feb 05 11 : 27 : 17 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.675674 s
Feb 05 11 : 31 : 37 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.589458 s
Feb 05 11 : 35 : 59 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.457986 s
Feb 05 11 : 40 : 17 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.295471 s
Feb 05 11 : 44 : 36 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.158376 s
Feb 05 11 : 48 : 48 [ntpd] a d j u s t i n g l o c a l c l o c k by 1.034453 s
Feb 05 11 : 53 : 13 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.912603 s
Feb 05 11 : 57 : 26 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.801233 s
Feb 05 12 : 01 : 40 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.671071 s
Feb 05 12 : 05 : 54 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.527679 s
Feb 05 12 : 10 : 14 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.446749 s
Feb 05 12 : 14 : 36 [ntpd] a d j u s t i n g l o c a l c l o c k by 0.286010 s
Feb 05 12 : 34 : 23 [ntpd] skew change 60 .748 exceed s l i m i t
Feb 05 12 : 34 : 23 [ntpd] c l o c k i s now synced

5

2 Method for deriving skew from web cookies

2.1 External time carried in cookie expiry information
A web browser cookie can carry time information that reflects the state of a web
server’s clock at the time of the request that led to the creation of the cookie on
the client side. The following schema (Figure 2.1) illustrates how information on
the state of the server clock can end up on the client.

Figure 2.1: External time time incorporation (without skew). A client sends a
request. In the response, the server sets a cookie. To determine the expiry of the
cookie, the server adds a constant ∆s (of, in this case, one hour) to the current time,
which it derives from its local clock. The client stores the cookie with the expiry
timestamp received from the server, and timestamps the cookie with a creation time
that is derived from its local clock. The difference between these two timestamps
on the client side is ∆c. Note that ∆s and ∆c are identical.

If a clock skew is introduced in the client system, the mechanism results in
artefacts from which that same skew can be derived ex post. See Figure 2.2 on the
following page.

6

Figure 2.2: External time time incorporation (with skew). A client sends a request.
In the response, the server sets a cookie. To determine the expiry of the cookie, the
server adds a constant ∆s (of, in this case, one hour) to the current time, which it
derives from its local clock. The client stores the cookie with the expiry timestamp
received from the server, and timestamps the cookie with a creation time that is
derived from its local clock. The difference between these two timestamps on the
client side is ∆c. Note that ∆s minus ∆c yields the skew.

2.2 Exploiting expiry information
Given a cookie C from the browser’s cookie storage, we can retrieve ∆c simply by
subtracting the creation time from the expiry time – both these timestamps are
metadata stored with the cookie. And if we also know the ∆s that was used by the
server in the creation of C, we can calculate a skew S : S = ∆s-∆c .

How then to determine ∆s? If we know the HTTP reply that lead to the creation
of C, and the time that response was made, we can subtract that time from the
expiry in the reply – this gives us ∆s. But we will first need to match the cookie
to the HTTP reply. To do so, we need to define an indentity for a cookie.

2.2.1 Identity of a cookie

Which attributes of a cookie can we use to match it to some recorded HTTP reply?
The authoritative definition of how web browsers and web servers should han-

dle cookies is drafted by the IETF.3 The most current definition is in RFC6265 -
HTTP State Management Mechanism. [1] That definition is relatively recent – the
mechanism has been defined in two earlier incarnations as RFCs 2965 and 2109.

3Internet Engineering Task Force; http://www.ietf.org/.

7

http://www.ietf.org/

As these RFCs have been compromises between prescription on the one hand, and
description of the status quo of web browsers and web servers on the other, they
are not guaranteed to describe the behaviour of any particular web browser found
in the wild. [8, pp. 60-62]

When a cookie is generated on the web server, it is sent to the client in the
Set-Cookie HTTP reply header. Apart from a payload – a name-value pair – this
header value contains metadata that indicate to the web browser the circumstances
under which it is to send the payload on following requests.

A typical Set-Cookie header has the following appearance:
Set -Cookie: foo=bar; path =/; expires=Fri , 21-Dec -12 00:00:00 GMT; domain =.baz.com

foo=bar are the name and value for the cookie; this is what the web server
wishes to receive from the browser on subsequent requests. The rest of the fields
are optional. For some of them, a default value is assumed, for others, a value is
derived by the browser based on the request URI. The saved metadata fields will be
matched against the request URI and system clock on subsequent requests.

Using section 5.3 “Storage Model” of RFC6265 as a reference, we can infer a
definition for the identity of a cookie that serves our purpose of matching stored
cookies to recorded HTTP replies. Two necessities aid us in this:

� When a browser is steered towards a web site it needs to decide if it has any
cookies in store that need to be sent along with the request.

� Conversely, when a server sends a browser a cookie, the browser will need to
decide whether it is going to store a new cookie or update one of its stored
cookies.

When sending a request, the browser will match the request URI to its stored cookies
based on their path and domain attributes.4 Therefore, path and domain are logical
components of the identity.

When receiving a reply, the browser will again match the path and domain. In
addition, it will try to match the name. If a match is found it will update the value
of an existing cookie with that name, instead of creating a new one. Clearly, the
name is part of the identity.

To match a stored cookie to the server response from which it originates, we
will use the combination of name, path and domain:
id(C) = {name, path, domain}. From hereon, we refer to such identities as CIDs.

This identity definition aligns well with collision directive 1 of step 11 in the RFC
storage model, which notes:

Let old-cookie be the existing cookie with the same name, domain,
and path as the newly created cookie. (Notice that this algorithm
maintains the invariant that there is at most one such cookie.) [1]

4The standards are unclear on whether protocol security (identified by the secure attribute)
and exclusive access (httponly attribute) are part of the identity of a cookie. More specifically –
if a browser receives two cookies, with the same name, domain and path, one of which is carrying
the httponly attribute – will it store two cookies or just one? [7]

8

2.3 Caveats
We have shown a mechanism that allows us to derive a skew S. However, this
mechanism relies on circumstances that may not always be met. To make matters
worse, it is not always possible to tell whether they have been met.

2.3.1 Cookie creation time is misleading

RFC6265 [1], section 5.3 dictates how cookie updates should be handled. On the
topic of creation times it notes that if a cookie is updated, the creation time is to
be preserved.

The result of this mechanism is that ∆c can only be determined if the modifi-
cation time of the cookie is known – for if a cookie is modified, its creation time
becomes useless and ∆c should be calculated from the modification time instead.
To serve an example: Suppose, at t = 0, a web client receives a cookie that expires
at e = 100. The creation time will be set at c = 0, and its expiration at e = 100.
At t = 50, the web client visits the server once more, and the server sends the client
a new version of the cookie with an updated value (and expiration at e = 150).
The client will update its cookie with the new value and a new expiration, but the
creation time will be preserved. When calulcating ∆c using the creation time, and
having established that ∆s = 100, it will seem like the client’s clock was skewed –
while it was not.

2.3.2 Expiration metadata is not always derived from an external clock

max-age
Instead of expires – an absolute time, the server can use the max-age
attribute to specify an offset to the current time. The client will add
this offset to its current time. When this mechanism is used, the cookie
does not store time that is derived from the server’s clock – and there is
no way to distinguish between the two ways the expiry could have been
set just from looking at the cookie. Servers can send both an expires
and a max-age attribute in a set-cookie header, in which case the
latter takes precedence. Further complicating the matter is that not
all web browsers treat these attributes the same way. Until recently,
Internet Explorer did not honor the max-age attribute at all. [7]

javascript
Cookies can be read and set by javascript scripts. With the Mozilla
Firefox browser, any time one wishes to set or modify a cookie with
javascript expiration information needs to be added or the cookie will
not get stored.5 As Javascript executes on the client machine any
expiration information will most probably not originate on the server.6

The httponly cookie attribute protects cookies from being read or
updated by javascript scripts. As such, a cookie with this attribute

5Tested with Mozilla Firefox 18.0.
6Technically it could, though a programmer would have to go out of his way to make this work.

9

is guaranteed to not have undergone modification by javascript. Any
other cookie could have had its expiration information set using the
local clock.

static expiries
Nothing dictates that a web server should calculate expiry by adding
some constant to its current time. As we will see, it just happens to be
the common case, but there are many exceptions.

2.3.3 Time and network-related problems

server time
When we are depending on the server’s local clock we either need to
determine its skew with regard to universal time (UTC), or we will just
have to assume it is running in sync with UTC. How safe an assumption
is that? In 2006-2007, Bucholz and Tjaden have conducted a large scale
measurement of popular web server’s skews that sheds some light on
this issue:

Approximately 74% (6040 out of 8149) of all hosts that
responded were within ±10 s of our reference time. The
other 26% (2109 out of 8149) that responded were more
than 10 s out of synchronization – some by seconds, some
by minutes, some by hours, some by days, some by weeks,
some by months, and some by years. About two thirds (5510
of 8149) of the hosts that responded were tightly synchro-
nized to within ±2 s of our reference time, and a little more
than half (4213 of 8149) showed a time difference of 0 s as
measured by web-time. We were a bit surprised to see only
50% of the hosts with no time difference from our machine.
Before run- ning the experiment we had expected that this
number would be much higher as these are popular Internet
web servers and we had expected the vast majority to be
tightly synchronized. [3]

If one is to rely on server time, it is definately desirable to pre-emptively
measure server skew.

network lag
The instant the server sets the expiry is not the same instant the client
processes the cookie and sets the creation time. The latter will nat-
urally take place later. This means that even if the server’s and the
client’s clock are running in perfect sync a positive value for S will be
derived, since ∆s < ∆c . This apparent skew may amount to seconds
if there was serious network congestion at the time of cookie transfer.
Congested links are no exception at the consumer end of the spectrum,
especially when it concerns mobile environments.

10

timestamping resolution
When time is expressed in second granularity, as is the case with the
data at hand, a difference of mere milliseconds may easily amount to a
recorded measurement of one second. Consider the following scenario.
Again, a server and a client are running in perfect sync with regard to
their clocks. The server dispatches a cookie at T = 1.999s. When
setting the expiry information, it uses the current time – but measured
in seconds, which results in T = 1s.7 Network lag is minimal so the
client receives the cookie at T = 2.001s. When setting the cookie
creation timestamp, it will use T = 2s. So even though the transfer
time was two milliseconds, this phenomenon will make it seem like the
client was skewed by one second.

7Whether rounding or flooring is used to downsample doesn’t matter: one way or the other,
there is a boundary – either at .0 or at .5 .

11

3 Creating a database of server deltas
To perform our skew calculations we will need to relate a cookie C to the server
delta ∆s which was used in its creation. To relate C to server headers, we can use its
identity – {name, path, domain} – all of which can be derived from Set-Cookie
headers and the request URI that led to the reply that the header is part of.

To calculate ∆s, we will need to know what the server clock’s time was at the
moment the Set-Cookie header was generated. Fortunately RFC2616 dictates that
a server must represent the date and time at which the reply was generated in the
Date header. [4]

Therefore, it appears that all we need to create a database of server deltas is a
corpus of HTTP replies.

3.1 Shodan: A web server reply corpus
The “HTTP Header Survey” published by Shodan Research is just such a corpus. [6]
It contains the reply headers that the Alexa8 top ten thousand websites generated
in response to requests made with 14 different user-agent request headers. The
request URI is not recorded in full, but the fully qualified domain name is, and the
responses imply that a request is made to the root (/) of each web server.

Below is an example of an entry in the dataset:
36 , app l e . com , Moz i l l a /2 .0 (compa t i b l e ; Ask Je ev e s) , "HTTP/1 .0 302 Object Moved
Loca t i on : h t tp : //www. app l e . com/
Content−Type : t e x t / html
Cache−Con t r o l : p r i v a t e
Connect ion : c l o s e

"

The dataset is in CSV format. Since HTTP replies include linebreaks, there
are linebreaks within the records. Each record contains four fields: site-id (the
rank in the top-10,000), fully qualified domain name, user agent and HTTP reply,
respectively. The particular reply listed above is meant to instruct the user-agent
to redirect to a different URI.

For this research project, we use the September 22nd, 2012 issue of the dataset.9

3.2 Representativeness and shortcomings
� The dataset does not include the time of request dispatch, nor the time the

reply was received. This makes it infeasible to check whether the web server
was in sync with UTC or to control for forementioned network lag effects.
Not being able to correct for server skew will likely introduce errors in some
data derived from the dataset.

8Alexa (http://www.alexa.com) are a web analytics company. They publish a freely down-
loadable report of what they deem to be the top one million websites.

9Shodan Research has given permission to redistribute this issue of the dataset as part of the
cookieskewer software distribution.

12

http://www.alexa.com

� The top-10,000 web sites are just the sites that people steer their browsers
towards. Those web sites might well host large amounts of information on
content distribution networks, or they might embed content from advertising
networks – all of which could employ cookies for some reason. If a user were
to visit each of the 10,000 web sites that user will likely end up with many
cookies that cannot be related to the dataset.

� It is not a longitudinal survey. A longitudinal data set would permit determin-
ing how often a server delta changes, deriving a measure of flux that would
serve to indicate how trustworthy a certain ∆s is. For now, we will just have
to assume that if some CID leads to a certain ∆s, that this particular delta
has always been used.
However, due to the fact that 14 requests were made to each server – one
request for each user agent – we still have multiple samples, which will help
us to find out whether a server is actually using a constant ∆s to calculate
expiry.

� The top-10,000 web sites may be particular in their architecture because they
have to cope with large amounts of visitors. Statistics derived from the dataset
might be skewed towards high performance architectures. For instance, setting
a constant expiry or using max-age is arguably less resource intensive than
polling the system clock. When dealing with millions of requests this can
make a difference.

3.3 Sanitizing input data
The input data originates from an unregulated domain. Unregulated, for RFCs are
not enforced. It should come as no suprise then that there is some variance in
adherence to RFCs, and this poses challenges.

Point in case: Opinionsphere.com sets a cookie Expires attribute with the
following date: Fri, 21-Sept-2012 12:56:19 GMT. The question is not if one
can make sense of this date. A human can, but that by itself does not warrant
inclusion of the CID in the database – for by doing so, one would be implicitly
assuming that any browser can and will interpret this information. But as it happens,
this date does not conform to RFC specifications.10

In this project a pragmatic approach to admission issues is taken. If data does
not fit the formats defined in the RFCs, it is simply discarded. The net effect of
this measure is that some samples from the Shodan dataset will not be represented
in the database. Since the utility of the database does not depend specifically on
modeling each and every one of the 10,000 web sites of the Shodan survey, this
choice can be defended.

However, when parsing input data caution has been taken by quantifying the
effects of each decision. The assumption is that if a significant part of the dataset
shows non-RFC properties, user agents will most probably accept those properties.

10The locus of the problem is ‘Sept’. Most probably the month of September was intended,
which should be abbreviated as ‘Sep’.

13

One site may be misconfigured, but if many sites deviate from the standards in a
specific way, then that behaviour is quite likely accepted at the other end. Being
too strict would discard significant parts of the dataset for no apparent benefit: we
have already noted that the RFCs are not a proper model of web browser behaviour.

3.4 Applications of the database
We process the headers from the Shodan dataset into a semi-normalized relational
form.11 What facts can be learned by querying the database? And which derived
data sets will prove useful? What follows is an overview of derived datasets and
statistics that will be used when processing a browser cookie store.

MCL
“Max-age Cookie List” – From the server headers, it is straightforward to
gather CIDs of cookies which could derive their expiration through the max-
age mechanism. Any cookie that has an identity which is in this list is unfit
to be used for estimating skew. There are 95 such identities on this list.

BDL
“Bad Date List” – A list of expiries that appear to be constants. Expiries
can be static: the same date will be set in every cookie. Often this is a
date far into the future, such as, for instance, 2038-01-19 03:14:0712 or
9999-12-31 23:59:59. Dates in the past (such as 1970-01-01 00:00:00)
occur as well – setting an expiration date in the past is the only way for a
server to get a client to delete a cookie.13

By comparing multiple samples from the same server, constants can be de-
tected.14

VCL
“Variable expire-delta Cookie List” – Some servers act erraticaly in that delta
nor expiry are constant. The resulting ∆s cannot be used for estimating skew.
Variance can occur for a couple of reasons.
If the variance of ∆s across multiple samples is small, then that could be due
to requests straddling the second boundary: as noted before, the instant the
Date header is set is not necessarily the instance that the Expires-attribute
of a cookie is determined. This is a natural consequence of the 1-second
resolution of the timestamps.
Larger variance of ∆s can arise if the Date header is created on a different

11In the cookieskewer software distribution, this is accomplished by executing ’make zodan.db’.
12This is exactly 231seconds after January 1st, 1970 and the largest time representable by a 32

bit (signed) integer in the structure returned by the gettimeofday() system call (POSIX.1-2001).
13The natural consequence of this is that these past dates will not be found in browser cookie

expiration metadata.
14In the cookieskewer software distribution, these can be generated through make BDL.txt. It

should be noted that the method used in make BDL.txt – naively – does not take into account
the sample count of the CIDs. Therefore, the expiration for a CID with one single sample will end
up on the BDL while it may not be a constant expiry. A manual selection of bad dates is included
in the distribution as BDL.curated.

14

server than the Set-Cookie header. One way to spread server load is to host
a pool of dynamic content servers (handling cookies) behind one or more re-
verse proxies (that handle caching and set the Date header). If these servers
are not running with their clocks in sync, or if one timestamp is cached while
others aren’t, this gives rise to variance.15

Lastly, servers might use a constant ∆s for calculation of the expiration at-
tribute but cache the result, only updating it periodically.16

Complicating the matter is that the samples are taken using different user
agent headers in the request. If variance is observed, this may not actually
mean the cookie is useless – servers might deliberately send different expiry
information to a mobile browser user agent, for instance.
These are the criteria by which the CIDs that make up the VCL are selected:

1. 10 or more samples need exist for this CID.
(This discards 12% of the identities)

2. The largest ∆s is larger than the smallest by three or
more seconds.

These criteria result in a VCL that contains 368 of the 1819 CIDs that have
their expiration set through an ’Expires’-attribute.

DSM
“Delta Server Map” – A mapping of CIDs to their canonical ∆s. Given the
variance described earlier, how do we define inclusion?

1. 10 or more samples need exist for this CID.

2. The largest ∆s is no more than two seconds larger
than the smallest.

3. At this point, there can be at most three distinct
∆s in the samples for this CID. There should be one
dominant value; one which is more common than the
two others. This dominant value will be the canonical
∆s for this CID.

These criteria result in a DSM that contains 1192 identities. Note that there
are 259 CIDs that are neither in the VCL nor in the DSM. They are not
designed to cover all the identities that can be found in the dataset; the
dataset does not allow to classify all server behaviour as either usable or
unusable for calculating skews.

Distribution of ∆s

The values in the DSM follow a non-random distribution. See figure 3.1 on
page 27. Figure 3.2 on the following page shows the distribution is highly
uneven; close to 50% of the ∆s are covered by just five values: 1 year, 1

15An example of variance that could have such an explanation can be found in the headers for
chatvibes.com .

16www.net.cn seems to be doing this.

15

month, 1 day, 1 week or 10 years. The 50 most-occurring values account for
90% of the distribution.

Incidence of the httponly attribute
The httponly attribute is present for close to 12% of the cookie identities.17

Would it have been much more – half of them, perhaps – then it would
become a viable approach to simply disqualify for analysis any cookie that
does not have this attribute, taking away one of the uncertainties noted in
section 2.3.2 on page 9.

Ratio of usable cookies
For an unrecognized cookie that has an expiry that is not on the BDL, what is
the propability that its expiration timestamp is set through the mechanism we
depend on? The information on the sizes of the above derived datasets allow
us calculate this; it is the amount of useable cookies expressed as a fraction
of the total: 1192

95+368+1192 ≈ 0.7. The max-age attribute is not prevalent –
it is fortunate that this RFC-recommended attribute does not seem to have
gained much traction (yet).

Figure 3.2: This shows the cumulative distribution for ∆s. Taken together, less
than 10 values account for the majority of ∆s found in the samples that make up
the DSM.

17This is reproducable by running make httponlyfraction.magic from the cookieskewer soft-
ware.

16

4 The skew estimation algorithm

4.1 Description of inputs
The algorithm operates on a browser cookie store. For each cookie, it needs the
following attributes:

� name, path, domain
Used to compose a CID.

� creation timestamp and expiration timestamp
Used to calculate ∆c.

� httponly
Used for determining cookie trustworthiness.

From the database, the following derivatives are used:

� MCL
Any cookie which is known to have derived its expiration from a max-age
attribute, should be discarded.

� BDL
Any cookie of which its expiration timestamp is on the list of bad dates,
should be discarded.

� VCL
Any cookie which is known to originate from a server that behaves erratically
with respect to ∆s, should be discarded.

� DSM
Used to match retrieve a reliable ∆s associated with a CID.

� ratio of usable cookies
Used for determining cookie trustworthiness.

� distribution of ∆s

Used for forming (ranked) hypotheses for cookies that are not in the DSM.

4.2 Dealing with imprecision
Variance of ∆s and ∆c introduced by jitter (through network latency and sampling
rate artefacts) poses a challenge. For instance, when analyzing a web browser cookie
store, all cookies from the store could be associated with a ∆s (in the terminology
of section 3.4 on page 14, all CIDs would be in the DSM). Supposing the system
has never been skewed, an analysis would have to show zero skew.

Variance will disturb this outcome. Even if variance for both ∆s and ∆c is only
±1, resulting skew estimates will be in the domain [−2, 2] – distortion is cumulative.
A method to curb this effect is needed. The mechanism would collapse the domain
to a single value, so that, in the example given, all cookies would predict a zero

17

second skew. Such a method would trade precision for stronger support of found
skew hypotheses. This becomes especially important when dealing with multiple
skews.

The algorithm that provides this mechanism is implemented such that it collapses
counts within a folding range in order of dominance. That is to say, given the
following series of values:

[98, 99, 100, 100, 101, 102, 102, 102, 103]
and their respective counts;
{[98 : 1], [99 : 1], [100 : 2], [101 : 1], [102 : 3], [103 : 1]}

with a folding range of [−1, 1], a new and collapsed counting will result:
{[98 : 1], [100 : 3], [102 : 4]}.

Note that the ‘contested’ value of 101, which fell within the folding range of both
100 and 102 has been taken up by the latter, which was the most dominant initial
value. This algorithm will be applied during different stages in the analysis: first,
when creating an a priori probability distribution of ∆s, second, when forming skew
hypotheses. In the remainder of this report, whenever the term ‘folded’ or ‘folding’
comes up, this algorithm is what is referred to.

4.3 Forming hypotheses – A voting system
For each cookie, a skew S : S = ∆s-∆c will be calculated. For cookie identities
that are in the DSM, ∆s can be determined by a lookup and these cookies will each
predict a single skew S, or rather, a single vote for some skew.

However, the dataset might not cover all CIDs found in browser cookies. To solve
this, a cookie can predict multiple skews – each of the ∆s found in the distribution
of ∆s will be used to calculate a skew, forming a skew set. In this way, a cookie
casts votes for many skews, and if this is done for all cookies then the amout of
skew estimates will equal the cartesian product ∆s×∆c. When viewed in isolation,
this seems useless – when we know that only one ∆s was involved in the creation
of the cookie, and certainly not all of them, why apply all of them?

It is when tallying the votes and thereby combining all skew sets of all cookies
that an interesting effect makes its appearance: convergence on the true skew.
Of the many skew estimates of one particular cookie, only very few will overlap
with those of one particular other cookie. Even fewer will be shared between three
cookies, andsoforth. The support for the true skew will be large (its upper bound
is the size of the cookie collection) whereas there will be little shared support for
stray estimates.

The gravity of the effect depends on the size of the browser cookie collection –
obviously, the effect is not present when a collection consists of only a single cookie.
Second, it depends on the fidelity of the browser cookies; ideally their expiration
timestamps would reflect the state of the server’s clock. Third, it depends on the
representativeness of the distribution of ∆s used.

18

4.4 Ranking hypotheses – Weighted voting
Hypotheses are not created equal. There is uncertainty associated with many of the
cookies that support a hypothesis. Besides uncertainty with respect to a cookie’s
fidelity, there is uncertainty for many of the skews in a cookies’ skew set – at most
one of the ∆s used to create the skew set was the true ∆s.

It is possible to calculate the ‘trust’ for each hypothesis using each individual
cookie’s reliability estimate and the prior probabilities of ∆s applied in creating its
skew set. Hypotheses supported solely by cookies that are recognized from the DSD
will have relatively higher trust than hypotheses that are not. Cookies that have
an httponly attibute set will increase aggregate trust for a hypothesis more than
cookies that have not.
A cookie’s trustworthiness is quantified as follows:

1. Let A be the probability that the cookie’s expiration has been affected through
javascript interactions.
If the cookie has the httponly attribute set, assign A = 1.
If not, assign A = (1− j), with j being a runtime parameter that represents
an investigators estimation of the general a priori probability that a cookie’s
expiration has been affected through javascript interactions.18

2. Let B be the probability that the cookie is usable with respect to behaviour
which takes place on the server. In other words, the probability that the
cookie’s expiration was set through the mechanism explained in section 2 on
page 6.
If the cookie’s CID is in the DSM, assign B = 1.
If not, assign to B the general ratio of usable cookies described in section 3.4
on page 14 – this can be determined at runtime.

3. Assuming A and B are independent, a cookies’ trustworthiness CT is their
product: CT = A×B.

For each skew in a cookie’s skew set, the probability of it being the correct skew
can be quantified as follows:

1. Let X be the probability that the skew is the result of applying the correct
∆s. If the cookie’s CID can be found in the DSM, assign X = 1.
If not, assign to X the relative frequency of the particular ∆s, which can be
derived from the distribution of ∆s.

2. Assuming CT and X are independent, the trustworthiness of a specific skew
ST from a cookie’s skew set is their product: ST = CT×X.

The aggregate trust for a skew estimate can be derived from summing up the ST , for
that skew, of each of the cookies that support the skew estimate. The upper bound
of that number is the size of the cookie collection — the product of probabilities
A, B and X is invariantly ≤ 1.

18Empirical data on javascript cookie interactions is sorely missing.

19

5 Implementation

5.1 The program interface
Listing 2 on the next page shows the command line interface of the skewy.py
program. As inputs it needs at the very least the database derived from the Shodan
data set, and a browser cookie store.

At the moment there is one single browser cookie store adapter, handling cookies
stored by the Mozilla Firefox (versions 3.0 and up) browser.

Some of the options are non-self-explanatory:

fold
(line 20) This option governs the behaviour of the algorithm that adjusts for
variance. Using 1 or 2 as a parameter is a good choice if the objective is to
correct for the non-meaninful variance induced by the sampling resolution of
1 second. As the folding is applied twice, the resulting imprecision in skew
estimates is twice this number. In other words, when using --fold 2 a skew
estimate of 10 actually means 10±4.

min_ds
(line 23) This option modifies the ∆s distribution, restricting it to larger
values. This is meant to adjust for the fact that short-lived cookies are short-
lived: cookies that have an expiration one minute into the future are likely
to be garbage collected by the browser after a short while.19 Therefore,
the probability of finding short-lived cookies is low. This option allows to
investigate this effect.

topsd
(line 23) This option also modifies the ∆s distribution, restricting it to more
common values. As can be gathered from the cumulative distribution of ∆s

(figure 3.2 on page 16), extending the distribution to encompass uncommon
values offers diminishing returns – but at the same time, it will likely increase
noise. This option allows to investigate this effect.

interactive
(line 33) Activation of this option presents an interactive Python shell that
exposes all the internals of the program, making it easy for researchers to
investigate the properties of the data and the algorithms.

19This is completely dependent on the particulars of the cookie storage mechanism of specific
browsers.

20

Listing 2: Command line parameters for skewy.py from the cookieskewer software distribution.
1 % ./ skewy . py −−he l p
2
3 usage : skewy . py [−h] −z ZODAN −c COOKIEDB [−b BADDATES] [− f NUMBER]
4 [−−min_ds NUMBER{s ,m, h , d ,w, y }] [−v] [−d { csv , a s c i i }]
5 [− l NUMBER] [− i] [− t NUMBER] [− j FRACTION]
6
7 Est imate t ime skew f o r c o l l e c t i o n o f web browse r c o o k i e s . Outputs r e s u l t s i n a
8 t a b l e .
9

10 o p t i o n a l arguments :
11 −h , −−he l p show t h i s h e l p message and e x i t
12 −z ZODAN, −−zodan ZODAN
13 Path to Zodan database
14 −c COOKIEDB, −−cook i edb COOKIEDB
15 Path to F i r e f o x c o o k i e s . s q l i t e da tabase . I f path ends
16 with ’ . p i c k l e ’ , i t w i l l be pa r s ed as a p r e v i o u s l y
17 p i c k l e d cook i e c o l l e c t i o n .
18 −b BADDATES, −−baddates BADDATES
19 Path to Bad Date L i s t
20 −f NUMBER, −− f o l d NUMBER
21 Fold v a l u e s i n t o the n e a r e s t and most numerous one i f
22 d i s t a n c e i s l e s s than NUMBER.
23 −−min_ds NUMBER{s ,m, h , d ,w, y}
24 Don ’ t c o n s i d e r ∆s sma l l e r than NUMBER un i t s . Un i t s a r e
25 seconds , minutes , hours , weeks or y e a r s .
26 −v , −−v e r bo s e Be cha t t y (on s t d e r r)
27 −d { csv , a s c i i } , −−dump { csv , a s c i i }
28 Dump t a b l e o f found skews to s t dou t i n CSV or p r e t t y−
29 p r i n t e d ASCII .
30 − l NUMBER, −− l i m i t NUMBER
31 L im i t t a b l e output to top−NUMBER skew e s t ima t e s ,
32 o rde r ed by t r u s t .
33 −i , −− i n t e r a c t i v e Drop to i n t e r a c t i v e s h e l l
34 −t NUMBER, −−topsd NUMBER
35 Only use top NUMBER ∆s
36 − j FRACTION, −−jsmod FRACTION
37 Use FRACTION as a g e n e r a l (w r i t t e n−by−JS/ wr i t t e n−by−
38 j s+c l e a n c o o k i e s) r a t i o assumpt ion

5.2 An example run
5.2.1 A web browser cookie store

For an example run of the program we will need a collection of web browser cook-
ies. Such a collection is included in the cookieskewer software distribution as
xorry.pickle. It contains cookies gathered accumulated over the course of two
years using the Mozilla Firefox browser on a Linux workstation (named xorry) that
has had NTP synchronisation configured. Ideally, one would want to know the exact
skew record of this machine, but such is unavailable. Given its configuration, in the
experiments that follow, its skew is assumed to be zero. From hereon, the corpus

21

will be referred to as ‘xorry’.
In light of the problem with cookie creation time identified in section 2.3.1

on page 9, the choice of using a corpus gathered by the Firefox web browser is
a surprising one as this browser does not record modification timestamps when
updating cookies. The choice was made for pragmatic reasons; the SQLite format
used by Firefox to store cookies is well suited to exploration. Tests showed that
even under this adverse condition – having to rely on less trustworthy ∆s calculated
from creation timestamps – the algorithm was able to correctly derive skews.

The xorry corpus has been anonymized to the extent that it has not impacted the
algorithm; only the CIDs that were in the DSM, MCL or VCL have been preserved
(but the value of the name-value pair has been anonymized).

5.2.2 Program output

Let us go over the lines of output of the program as displayed in listing 3.

Listing 3: An example run of skewy.py on the data supplied with the cookieskewer distribution.
The program output shows a skew hypothesis of zero seconds ranking highest.

1 % ./ skewy . py −−zodan zodan . db −−cook i edb x o r r y . p i c k l e \
2 −−baddates BDL. cu r a t ed −− f o l d 2 −−jsmod 0 .15 −−v e r bo s e \
3 −−dump a s c i i −− l i m i t 10
4
5 C l i e n t c o o k i e s :
6 2786 i n i t i a l l y
7 2761 a f t e r s u b t r a c t i n g bad da t e s
8 2759 a f t e r s u b t r a c t i n g known maxage c o o k i e s
9 2756 a f t e r s u b t r a c t i n g known v a r i a b l e ∆s c o o k i e s

10 0 have at ime < ct ime (red f l a g)
11 21 have known ∆s
12 0 .72 t r u s t f o r unknown c oo k i e s
13 +−−−−+−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+
14 | ID | Skew | Trust | Support | # Known | E a r l i e s t date | L a t e s t date |
15 +−−−−+−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+
16 | 0 | 0 | 71 | 1337 | 9 | 2010−12−07 | 2012−12−19 |
17 | 1 | −28943999 | 32 | 425 | 0 | 2010−12−17 | 2012−12−19 |
18 | 2 | −31449599 | 22 | 576 | 0 | 2010−12−17 | 2012−12−19 |
19 | 3 | −126144000 | 20 | 190 | 0 | 2010−12−15 | 2012−09−03 |
20 | 4 | −31535999 | 14 | 737 | 0 | 2010−12−15 | 2012−12−19 |
21 | 5 | −155088000 | 14 | 182 | 0 | 2010−12−15 | 2012−09−03 |
22 | 6 | −283824000 | 13 | 127 | 0 | 2010−12−22 | 2012−12−19 |
23 | 7 | 28944001 | 10 | 468 | 0 | 2010−12−17 | 2012−12−19 |
24 | 8 | −157593600 | 10 | 303 | 0 | 2010−12−15 | 2012−12−19 |
25 | 9 | −30931199 | 9 | 448 | 0 | 2010−12−17 | 2012−12−19 |
26 +−−−−+−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+

6-9 The corpus contains 2786 cookies. Of these, only 30 could be filtered out based
on the MCL, VCL and BDL.

10 Firefox keeps a record of when cookies were last accessed – presumably for
garbage collection purposes. A record of a cookie that was accessed before

22

it was created creates a logical inconsistency which can be an indication that
the system clock has been rolled back at some time, and this should not go
unmentioned.

11 The size of the set-intersection between the 2756 cookie identities in xorry and
the 1192 CIDs in the DSM is only 21.

12 The 2730 remaining cookies of which the identities are not in the DSM get
assigned this number for probabilityB (as described in section 4.4 on page 19).

14 The table header refers to an ID (convenient when discussing output), a skew
hypothesis (in seconds), the aggregate trust of the hypothesis, the size of
the group of cookies that support a hypothesis, the portion of that group
that is on the DSM, and the earliest and latest creation date of the cookies
within that group. The latter two are not corrected for the associated skew
hypothesis.

16 The program correctly estimates the skew at 0 seconds. It is crucial to take
notice of the fact that the program has no built-in tendency to assume a skew
of 0 seconds. The algorithm does not work by trying to disprove the null
hypothesis that the clock was not skewed and the resulting skew estimate of
zero seconds is therefore a genuine feature of the input data, and not some
preconception.
Interestingly, only 9 of the 21 cookies that are on the DSM are part of the
group supporting this skew. This will be discussed in section 6.2.2.

17-25 These lines show the details of 9 other high-ranking hypotheses. They have
much less trust than hypothesis #0. None of them are likely to have been
correct at any moment during the lifetime of the cookie collection. This is
noise, but the values for the hypotheses are peculiar; they will be discussed in
section 6.2.1.

23

6 Discussion: Algorithm performance
While discussing algorithm performance, it is important to keep in mind that the
results of the performance tests are dependent on its inputs. Since only one web
client cookie corpus is used (which is crippled due to its lack of modification time
information) quantitative results, while indicative, hold no absolute value. It is
however quite possible to investigate the influence of various parameters.

6.1 Basic performance evaluation
The result of the example run (section 5.2 on page 21) invites to explore the limits of
the algorithm. First and foremost, what is the minimum size of a cookie collection
for it to allow its skew to be estimated? Second, how does it handle multiple skews?

Because the skew integrity of the xorry corpus is unknown (a skew of zero seconds
is assumed) test results should be interpreted relative to the baseline performance
from the example run.

6.1.1 Minimum collection size

To measure only the performance of the voting algorithm, the DSD is cleared.
Random samples of the cookies from the xorry corpus are taken, with sample sizes
varying from 1 to 25 cookies. The measure of performance is whether the correct
skew estimate (of 0±4 seconds; since --fold 2 was specified) comes up as the
most trusted one.

For each sample size, 500 test runs are done and the fraction of runs for which
the correct skew came up as most trusted is recorded. The results are shown in
figure 6.1 on the next page. The estimates become reliable for collection sizes
upwards of 10 cookies.

24

Figure 6.1: Correctness of estimate as a function of cookie collection size (folded
by 4s). About 10 cookies are needed for a reasonably reliable estimate.

6.1.2 Detecting multiple skews

It is likely that skew will vary over the course of the lifetime of a cookie collection.
Possibly, the system clock was skewed for only a short amount of time. This begs
the question: how many cookies are needed to distinguish such a secondary skew
hypothesis from noise? To answer that question a skew is introduced to some
fraction of the cookies of the xorry corpus. The larger the fraction, the more likely
it is that the skew will be detected as a secondary skew. The measure of performance
is the minimum size of the fraction necessary to let the corresponding estimate rise
above the noise and reach the second rank. For the xorry corpus (with cleared DSM
and --fold 2) this fraction proves to be about 0.35.20

6.2 Exploring complex properties
6.2.1 The origin of bogus skews

In the example run output (listing 3 on page 22, lines 17-25) we have observed
peculiar values for the nine lower-ranking skew estimates. Specifically, they are

20In skewy.py interactive mode, this can be established by introducing an artificial skew of, for
instance, 4242 seconds:
from testing import *; data.DSM.clear(); quick_est(skewgen(data.cookies, 4242, 0.35))

25

peculiar when expressed not in seconds, but in days, weeks and years (365 days).
These equivalent values are listed in table 6.1.

Table 6.1: Bogus skew estimates expressed in days, weeks and years, and broken
down in their likely components.

skew (in seconds) equivalent value ∆c component ∆s component
-28944000 -(1y - 30d) 1y 30d
-31449600 -(1y - 1d) 1y 1d

-126144000 -4y
-31536000 -1y

-155088000 -(4y - 30d) 4y 30d
-283824000 -(5y - 30d) 5y 30d

28944000 (1y - 30d) 30d 1y
-157593600 -(5y - 1d) 5y 1d
-30931200 -(1y - 1w) 1y 1w

Since we know these skews are derived as S = ∆s-∆c, we can make a guess towards
the values of the components. We know the distribution that ∆s comes from; it
has been discussed at length. We also know that the cumulative distribution for
∆s (figure 3.2 on page 16) is markedly lopsided. And since prior probabilities of
∆s are a cornerstone of the skew ranking algorithm, it deserves to be re-mentioned
that the four most common values are 1 year, 1 month, 1 day and 1 week, in
that order. These are therefore also likely values for the ∆s component in table 6.1.

We have not yet investigated the distribution of ∆c that is being operated on.
This distribution is shown in figure 6.2 on the following page. Above this figure, on
the same page, figure 3.1 is showing the ∆s distribution. The histograms are nor-
malized, allowing a direct and revealing comparison between the two distributions.

It is immediately obvious that they are dissimilar – not so much in where the
peaks occur as in the size of the peaks. The center of gravity for the client dis-
tribution appears to be towards the right of the 1 year anchor point whereas most
of the mass for the server delta distribution is on the left-hand side of it. It has
already been mentioned in passing that short-lived cookies are short-lived; they do
not accumulate as much as cookies with a longer shelf life. The latter are much
more abundant in the ∆c distribution. The four most common values are 1 year,
5 years, 2 years and 10 years, in that order.

These values coincide with the values for the ∆c component shown in table 6.1.
Armed with an understanding of a major characteristic in the difference between
the two distributions, it now becomes clear how the bogus skew estimates might
be formed and how they would derive their peculiar values – they are an expression
of a mismatch between the distributions. The mismatch leads to the same mistake
(of applying an inappropriate ∆s) being made repeatedly with the same numbers
as inputs, simply because certain ∆c and ∆s are so abundant.

26

Figure 3.1: Histogram showing the distribution of ∆s for samples in the DSM, in
the range 10 seconds – 30 years. Size of bins is 120 seconds.

Figure 6.2: Histogram showing the distribution of ∆c for the xorry web client cookie
corpus, in the range 10 seconds – 30 years. Size of bins is 120 seconds.

27

6.2.2 The consequences of employing an improper ∆s distribution

Relation of the ∆s distribution to web browser cookie stores
The skew estimation algorithm relies on a representative distribution of ∆s. As

we have seen in section 6.2.1, the shape of the ‘right’ distribution depends on
the lifetime of the browser cookie store it is applied to – older stores will have
accumulated more cookies with far future expirations. But even browser cookie
stores of the same age will feature different distributions since their shapes also
depend on when the browser was used and on when the garbage collector was last
run.

Superficially it seems that the ∆s should be individually tailored to browser
cookie stores under investigation. Doing so will prove to be a challenge, for skew
hypotheses rely on the temporal difference between corresponding peaks (the hor-
izontal dimension of the histograms in figures 3.1 and 6.2), while the accuracy of
the hypothesis ranking relies on the similarity in relative frequencies between corre-
sponding peaks (the vertical dimension of the histograms). Unfortunately, finding
pairs of corresponding peaks is only possible after correcting for skew: a chicken-
and-egg problem.

Completeness of the distribution
Is completeness of the ∆s distribution a factor of significance in the performance

of the algorithm? One way to measure the effect of the distribution size is to
gauge the signal to noise ratio (SNR) of the correct hypothesis while increasing
the distribution size – starting off with the most prominent ∆s and progressively
adding less prominent ∆s.21 The signal to noise ratio is defined as the fraction of
the support and trust for the correct skew hypothesis (which for the xorry corpus is
assumed to amounts to 0 seconds) of the total support and trust for all hypotheses
in the top-10 and normalized to the highest attained value. The experiment is run
with the folding parameter set to 2. Figure 6.3 on the next page shows the result
for the xorry corpus.

21With skewy.py, the distribution size can be varied using the --topsd parameter.

28

Figure 6.3: Development of hypothesis trust and support for the xorry client cookie
corpus with increasing coverage of the ∆s distribution distilled from the Shodan
dataset. Some steep drops in support SNR are annotated with the associated ∆s.

The figure leads to the following observations:

� The SNR plot experiences a series of sharp drops for hypothesis support SNR
after the 46th most prominent value. The ∆s values up to and including this
46th value cover about 85% of the total number of ∆s observed, as previously
illustrated by the lopsided picture painted in figure 3.2 on page 16.. Some of
the ‘long tail’ ∆s are inapplicable to the browser cookie store, as indicated by
significant drops in support SNR. The one second ∆s is likely the result of a
measuring error as described in section 2.3.3 – a mistaken interpretation of a
Set-Cookie header meant to expire a previously set cookie. And even if it
were not, it is unlikely to find such a short-lived cookie before it is garbage
collected. The drop associated with addition of the 4 year ∆s value may well
be an illustration of distribution mismatch: figure 3.1 on page 27 shows a
peak at 4 years, whereas the ∆c histogram (figure 6.2 below it) does not.

� In contrast to hypothesis support, hypothesis trust SNR is not significantly
affected by addition of the annotated values. This is due to the diminishing
prior probability of those values; they do not matter enough to make a dent.
Moderating hypothesis support by taking prior probability into account shows
its worth.

� It does not seem to pay to include the ‘long tail’ of the distribution. Maximum
trust SNR occurs with about 30 of the most commonly occuring ∆s, together
making up slightly over 80% of the ‘mass’ (see figure 3.2 on page 16).

29

Impact of impairment due to absence of cookie modification timestamps
As noted, the Mozilla Firefox browser that produced the xorry corpus does not

record modification timestamps. The skewy.py program derives ∆c using creation
timestamps instead, which makes them less trustworthy. How untrustworthy de-
pends on how prevalent the act of updating cookies is. Servers can update a cookie
stored by the browser in one of two ways: simply by sending an updated value, or by
first expiring the old cookie and subsequently setting a new one. In the latter case
there is no problem. If many cookies are updated through the former mechanism,
this will have the effect of creating many unique values for ∆c. Therefore, an indi-
cation of the gravity of the problem can be derived from a cumulative distribution
plot of ∆c in the xorry corpus, where it will show up as a long tail. Figure 6.4 shows
this distribution.

Figure 6.4: The cumulative distribution for ∆c from the xorry corpus (folded by
120s). All values after the 256th are unique, hence the ‘knee’ in the transition from
values that occur twice to values that are unique at around the 250th value.

Contrasting this distribution with the one for ∆s shown in figure 3.2, it becomes
clear that although some values are much more common than others, the distribution
is less lopsided than the one shown in figure 3.2. Whether updated cookies are at
the cause of this remains unproven. One way to find out about this would be to
contrast these findings with an analysis of a cookie store from a browser that does
feature modification timestamps, such as Microsoft Internet Explorer.

Distortion imposed by untrustworthy ∆c may partly explain the fact that only 9
out of the 21 cookies known from the DSM are found to be supporting the correct
skew hypothesis (see listing 3). One of the other cookies is supporting a skew of -8,
another is supporting a bogus skew of three years, and the ten remaining cookies

30

are alone in supporting skews that no other cookie supports. Support for the the
three year skew might be a consequence of nonrepresentativeness of the Shodan
corpus; the two encounters could be as much as two years apart and the server’s
configuration may have changed in the meantime. The skew of -8 is insignificant;
it may be on the client side, but it might also be on the server side. The isolated
skews supported by the other ten cookie identities may be the result of updated
cookies.

6.3 Avenues for improvement
During research and development, some ideas for improvement of the algorithm
performance had to remain unexplored. What follows is a compact enumeration of
these ideas.

6.3.1 Using partial cookie identities

Listing 3 shows that there is a surprisingly small overlap between CIDs in the xorry
corpus and CIDs in the Shodan corpus. 26 CIDs are shared. The world wide web
is of course much larger than the 10,000 web sites probed for the Shodan corpus.
Improving the server reply dataset by probing more sites and creating a longitudional
survey will prove to be of value. But there is another improvement possible. Server
behaviour is not solely dependent on hostname. It also depends on the software
that is run on the web site. Installations of the same software may well have shared
properties for cookie expiration.

To name an example: in the Shodan dataset, multiple sites can be observed to
be running the phpBB bulletin board software. This software sets a cookie with
name ’bb_lastvisit’. All 11 occurences of this cookie name have the same ∆s of
one year. Using probabilities (and a larger dataset), it will be possible to infer
a ∆s, or a probability distribution of ∆s, for a cookie based solely on its name
– a partial CID. On the client side, in the xorry corpus, (coincidentally) another
11 previously unrecognized cookies could then have been associated with this ∆s,
improving accuracy.

6.3.2 Impact of javascript and cookie updates

We have only made guesses towards what the impact that updates of cookies
through javascript scripts have on ∆c reliability (section 2.3.2). The same goes for
the importance of having access to the cookie modification time (section 2.3.1). The
first could be empirically determined by instrumenting the browser to log Javascript
modifications. The second could be empirically determined by comparing creation
timestamps and modification timestamps on cookies stored by a browser that keeps
both kinds of timestamps, such as Microsoft Internet Explorer. These uncertainties
could then be translated into probabilities and be automatically applied.

31

6.3.3 Finding local skews

Ultimately, the goal is to provide a record of historical skews. Several different skews
may have occured over the lifetime of the browser cookie store and the skewy.py
program output as shown in listing 3 is only a rough approximation of such a
record. In section 6.1.1 we have seen that upwards of 10 cookies are needed to
derive a skew based solely on probabilities. The understanding developed so far
opens up the possibility of a sliding window algorithm that delivers a description of
the development of clock skew over time.

7 Conclusion
This research project has contributed towards an increased understanding of the po-
tential of using web cookies for retroactive skew estimation. The software prototype
shows that by taking probability into account, and through the use of a database of
background data, it becomes feasible to estimate skew despite the many uncertain-
ties and pitfalls inherent in the mechanisms involved in the HTTP state mechanism.
The method is young and requires review and experimental verification before it can
be relied upon in forensic investigations.

References
[1] A. Barth. Rfc 6265-http state management mechanism. Internet Engineering

Task Force (IETF), pages 2070–1721, 2011. 2.2.1, 2.2.1, 2.3.1

[2] C. Boyd and P. Forster. Time and date issues in forensic computing—a case
study. Digital Investigation, 1:18–23, 2004. 1.1

[3] F. Buchholz and B. Tjaden. A brief study of time. Digital Investigation, 4:31–42,
2007. 2.3.3

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Rfc2616-hypertext transfer protocol – http/1.1. Internet Engi-
neering Task Force (IETF), 1999. 3

[5] R. Nolan, C. O’sullivan, J. Branson, and C. Waits. First responders guide to
computer forensics. Technical report, DTIC Document, 2005. 1.1

[6] SHODAN Research. Http header survey. WWW: http://www.shodanhq.com/
research/infodisc/report, 2012. Retrieved February 6th, 2013. 3.1

[7] M. Zalewski. Http cookies, or how not to design pro-
tocols. WWW: http://lcamtuf.blogspot.com/2010/10/
http-cookies-or-how-not-to-design.html, 2010. Retrieved Febru-
ary 6th, 2013. 4, 2.3.2

[8] M. Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press, 2011. 2.2.1

32

http://www.shodanhq.com/research/infodisc/report
http://www.shodanhq.com/research/infodisc/report
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html

	1 Introduction
	1.1 Rationale
	1.2 Research goals

	2 Method for deriving skew from web cookies
	2.1 External time carried in cookie expiry information
	2.2 Exploiting expiry information
	2.3 Caveats

	3 Creating a database of server deltas
	3.1 Shodan: A web server reply corpus
	3.2 Representativeness and shortcomings
	3.3 Sanitizing input data
	3.4 Applications of the database

	4 The skew estimation algorithm
	4.1 Description of inputs
	4.2 Dealing with imprecision
	4.3 Forming hypotheses – A voting system
	4.4 Ranking hypotheses – Weighted voting

	5 Implementation
	5.1 The program interface
	5.2 An example run

	6 Discussion: Algorithm performance
	6.1 Basic performance evaluation
	6.2 Exploring complex properties
	6.3 Avenues for improvement

	7 Conclusion

