UNIVERSITY OF AMSTERDAM

SYSTEM & NETWORK ENGINEERING

Preventing DNS Amplification
Attacks using white- and
greylisting

July 23, 2013

Author:
RALPH DOLMANS ralph.dolmans@os3.nl

Abstract

The amplification factor caused by the Domain Name System (DNS) can be used
to perform massive Distributed Denial-of-Service (DDoS) attacks. In an attempt
to mitigate this problem, RFC5358 describes that a Recursive Resolving Name
Server (RRNS) should provide its service solely to its intended users. These
intended users can be listed on a local whitelist.

For an Authoritative Name Server (ANS) there are no standards to restrict
access to exclusively its intended users, which would defy attacks from unin-
tended users. The intended users of ANSs are RRNSs. However, DNS Amplifi-
cation Attacks are typically targeted at worldwide services, such as webservers
and ANSs. By creating a global whitelist that contains all RRNSs these attacks
can be mitigated.

A global whitelist can be created by logging source addresses from requests
that are received at an ANS. Custom ANS software is built that uses the be-
havior of CNAME handling to emulate handshakes and prove that requests are
not spoofed. Software firewalls can be deployed to effectively limit the number
of responses sent to non intended users.

This research shows that the proposed solution covers all the attack vectors.
It also offers a practical implementation that seems feasible to execute, assuming
enough RRNS servers can be collected.

Contents

Introduction

Previous work

2.1 Resolverso
2.2 Authoritativeo
2.2.1 Creation of stateful connections
2.2.2 BCP38 related solutions

3 Proposed solution
4 Proposed solution effectiveness
4.1 Amplification using a remote RRNS
4.2 Amplification using a local RRNS
4.3 Amplification using an ANS to an ANS or non-DNS node
4.4 Amplification using an ANStoa RRNS
4.5 Effectiveness per scenario
5 Practical approach
5.1 Local whitelist
5.2 Global whitelist L.
6 Practical approach feasibility
6.1 Local whitelist
6.2 Global whitelist L
6.2.1 Latency benchmark
6.2.2 CPU load benchmark
6.2.3 Whitelist manager
7 Considerations and future work
8 Conclusion
A Pseudo-random IP list generation script
B Ipset whitelist generation script
C Latency benchmark results

2.2.3 ANS request thresholds

13
13
13

16
16
16
17
17
19

20

21

24

25

26

D CPU utilization benchmark results

E Global whitelist management tool

27

28

Chapter 1

Introduction

Many actions on the Internet, such as visiting websites and sending emails,
involve the translation from domain names to IP addresses. The Domain Name
System (DNS)[10][11] is therefore a critical component of the Internet. Another
use that DNS provides, is the ability to perform distributed denial-of-service
(DDoS) attacks. The DDoS attack on Spamhaus (March 2013) is currently
known as the biggest DDoS attack and was executed using DNS[14].

The DNS infrastructure consists of two elements. One element is the Recur-
sive Resolving Name Server (RRNS). The RRNS is provided by Internet Service
Providers (ISPs) to its customers and used as central point to query and cache
Resource Records. The other element is the Authoritative Name Server (ANS).
An ANS contains the original Resource Records.

The reason why DNS can be used to perform DDoS attacks is the combina-
tion of the used transport-layer protocol and the simplicity of the DNS protocol.
The User Datagram Protocol (UDP)[12] is used for the transport of DNS re-
quests and responses. Unlike the Transmission Control Protocol (TCP)[13],
UDP does not use handshaking dialogues. The lack of handshaking dialogues
creates the possibility to sent a UDP packet that contains a variable sized pay-
load and a spoofed source address. When a DNS request is received by a DNS
server it will reply with one response. Meaning, there is no detection of spoofed
source addresses in the application layer either. This allows a DNS server to
transfer data to a node that did not request for it.

The danger of sending unsolicited data using DNS depends on the effect of
the amplification factor. A DNS response is typically bigger than a DNS request,
hence an attacker can send significantly more data to the victim compared to
original request. When all the downstream bandwidth of the victim’s network
is used to receive the DNS responses, the victim will not be capable to handle
legitimate requests anymore.

According to the original DNS specification, a DNS response will fit in one
UDP package and thereby is at most 512 bytes. Hence, when a 64 bytes re-
quest is sent the maximum amplification factor is 8:1. In 1999 the Extension
mechanisms for DNS (EDNSO0)[17] were introduced to exceed the maximum size
of the response packet, hereby exceeding the maximum amplification factor as
well. Nowadays DNS is also used to store cryptographic keys, for example for
DNSSEC]3] and DKIM[2]. The relatively big size of these keys can be abused
to create a large amplification factor. During the DNS Amplification Attack on

Spamhaus, requests were made to retrieve DNS Resource Records for ripe.net.
The amplification factor of these requests was 100:1[15].

Chapter 2

Previous work

Previous research is done on methods to prevent DNS Amplification Attacks
from occurring on RRNSs and ANSs.

2.1 Resolvers

Due to RFC5358[4], DNS Amplification Attacks that use a RRNS can be pre-
vented by providing the DNS service to intended clients only. One of the sug-
gested ways to do this, is by using IP address based authorization. The RRNS
should only reply when the request is coming from a local (and authorized) IP.
The network containing the RRNS should be protected against external address
spoofing.

Restricting the access of a RRNS to local users is the advise in a report from
the National Cyber Security Division, Department of Homeland security[6] too.

2.2 Authoritative

Preventing a DNS Amplification Attack on an ANS by confining access to lo-
cal users is not a solution, since the service should be accessible to any user.
Solutions to mitigate DNS Amplification Attacks on an ANS recommended in
previous research can be divided into three categories: creation of stateful con-
nections, BCP38 related solutions and ANS request thresholds.

2.2.1 Creation of stateful connections

When the state of the connection between client and server can be stored, the
possibility to spoof the source address can be avoided. The state is generated
during the handshaking dialogue. DNS servers should only handle requests
that contain a state agreed upon by both parties, thereby introducing a simple
challenge-response mechanism.

Stateful connections can be created in the transport-layer. One way to
achieve this is by handling the DNS traffic over TCP instead of UDP. Another
way to create stateful connections is by saving states in the application-layer.
Guo et al. proposed a method to implement this idea by using cookies between
the requester and a firewall in front of the ANS[8]. Kambourakis et al. proposed

a method requiring a validation on a RRNS whether a request was made after
receiving a response[9]. TCPCT has been suggested to replace UDP for DNS,
amongst others by Allen and William[1].

The disadvantages of storing states at a server is the establishment of new
attack vectors. For example, it might be possible to create an unusual high
amount of states which would result in an overload of the server. Hence, making
it unavailable.

2.2.2 BCP38 related solutions

Another way to prevent source address spoofing is by excluding the possibility of
an UDP packet containing a source address of a node that is not in the sending
network segment. A method to accomplish this is by implementing BCP38[7].
The disadvantage of this method is that the responsibility of preventing
source address spoofing is situated at edge networks. When a malicious ISP
refuses to implement source address inspection, the possibility to perform DNS
Amplification Attacks from within that network remains unaltered.

2.2.3 ANS request thresholds

The third category contains solutions in which the ANS decides whether the
request should be answered or not.

Vixie proposed to do this, by using DNS Response Rate Limiting (DNS
RRL)[16]. In DNS RRL the server keeps track of the amount of transmitted
responses per subnet. When the amount of responses exceed a threshold, the
server will stop sending replies to a specific IP or subnet. Donnerhacke intro-
duced DNS Dampening[5]. DNS Dampening works with penalty points. Every
DNS request will give the source address one point. When the amount of points
exceed a threshold the server will drop all request containing that particular
source address.

The disadvantage of using thresholds is the occurrence of false-positives.
When many legitimate requests comes from one subnet, these requests might
be dropped. On the other hand, a problem is the occurrence of false-negatives.
When the attack is distributed over a number of different ANSs the number of
requests of each ANS can remain under the specified threshold, meaning that
the possibility to amplify requests can not be mitigated.

Chapter 3

Proposed solution

A solution without the mentioned disadvantages is needed. For a RRNS this
solution lies in solely handling requests coming from intended users. The IPs of
these intended users are specified on a local whitelist. This model is displayed in
figure 3.1. RFC5358[4] withholds the practical use of this solution at an ANS,
for the obvious reason that is will limit the access to a domain.

Create and
tranrmit response

Source address
on whitelist?

Request
received

DROP packet

Figure 3.1: RRNS whitelisting model

When looking at the distinction of the ANS architecture an the RRNS ar-
chitecture, we can deduct that the intended users for ANSs are RRNSs. When
looking at victims of DNS Amplification Attacks the opposite is shown. Vic-
tims are typically servers whose services are intended to be used by anybody,
for example a webserver or an ANS, and not a RRNS.

By using a global whitelist that contains all RRNSs, the impact of DNS
Amplification Attacks can be mitigated. ANSs should respond to requests reg-
ularly, when the source address in the requests is on the global whitelist. The
same model as with RRNSs can be used. This solution excludes the possibility
to perform a DNS Amplification Attack on an ANS or a non-DNS server.

At times it might be useful to have direct access to an ANS without the in-
tervention of a RRNS, for example when debugging. Therefore, requests coming
from an address that is not on the whitelist should not instantly get dropped.
Instead, the IPs that are not on the whitelist should be handled as greylisted.
When an IP is considered to be on the greylist, the ANS would limit the num-
ber of responses. This model is displayed in figure 3.2. The limit would prevent
the possibility to transfer data with such a big amount that it could overload a
server.

The server side source address verification rules for the proposed solution

Create and
tranmit response
rormally

Reguest

: ite- ist?
recaived White- or greylist?

Ratelimit response

Figure 3.2: ANS white- and greylisting model

are:

RRNS-1 source address of DNS request packet on the whitelist — handle
request normally;

RRNS-2 source address of DNS request packet not on the whitelist — drop
request;

ANS-1 source address of DNS request packet on the whitelist — handle request
normally;

ANS-2 source address of DNS request packet not on the whitelist — ratelimit
response.

Chapter 4

Proposed solution
effectiveness

To prove the effectiveness of the proposed solution it is necessary to create an
overview of all the variations on a DNS Amplification Attack. The different
attack scenarios can be divided into four categories, which contain two or four
scenarios:

4.1 Amplification using a remote RRNS

Scenario 1 Attacker not located in network of victim; amplifier not located in
network of victim and attacker; RRNS is used for amplification.

Scenario 2 Attacker not located in network of victim; amplifier located in
network of victim; RRNS is used for amplification.

RRMNS)

Attack scenario 2

Category 1, all attack scenarios mitigated by rule RRNS-2.

Figure 4.1: Amplification using a RRNS. RRNS is not located in victims net-
work, victim can be any type of node.

4.2 Amplification using a local RRNS

Scenario 3 Attacker not located in network of victim; amplifier is located in
network of attacker; RRNS is used for amplification.

Scenario 4 Amplifier, attacker and victim are located in the same network;
RRNS is used for amplification.

Attack scenario 4

Category 2, attack scenario 3 mitigated by combination of rule
RRNS-2 and protection against external address spoofing.
Attack scenario 4 not mitigated due to rule RRNS-1.

Figure 4.2: Amplification using a RRNS. RRNS is located in victims network,
victim can be any type of node.

4.3 Amplification using an ANS to an ANS or
non-DNS node

Scenario 5 Attacker not located in network of victim; amplifier not located in
network of victim and attacker; ANS is used for amplification; victim is
not a RRNS.

Scenario 6 Attacker not located in network of victim; amplifier located in
network of victim; ANS is used for amplification; victim is not a RRNS.

Scenario 7 Attacker not located in network of victim; amplifier is located in
network of attacker; ANS is used for amplification; victim is not a RRNS.

Scenario 8 Amplifier, attacker and victim are in the same network; ANS is
used for amplification; victim is not a RRNS.

4.4 Amplification using an ANS to a RRNS

Scenario 9 Attacker not located in network of victim; amplifier not located in

network of victim and attacker; ANS is used for amplification; victim is a
RRNS.

10

Attack scenario 7 Attack scenario 8

Category 3, all attack scenarios mitigated by rule ANS-2.

Figure 4.3: Amplification using a ANS. Victim can be an ANS or non-DNS
node.

Scenario 10 Attacker not located in network of victim; amplifier located in
network of victim; ANS is used for amplification; victim is a RRNS.

Scenario 11 Attacker not located in network of victim; amplifier is located in
network of attacker; ANS is used for amplification; victim is a RRNS.

Scenario 12 Amplifier, attacker and victim are in the same network; ANS is
used for amplification; victim is a RRNS.

ANS

A RRNS

Attack scenario 8

Attack scenario 11 Attack scenario 12

Category 4, attack scenarios not mitigated due to rule ANS-1.

Figure 4.4: Amplification using a ANS. Victim is a RRNS.

4.5 Effectiveness per scenario

When a RRNS is configured to reply to requests coming from intended users only
(rule RRNS-2), the attacks scenarios listed in the first category are prevented.

11

When the network containing the RRNS is protected against external address
spoofing, attack scenario 3 from the second category is prevented as well.

The attack to a local server using a RRNS, as shown in attack scenario 4,
will remain possible due to rule RRNS-1. This possibility is not a big issue,
since the victim can solve this problem by contacting his ISP. When BCP38 is
implemented at the ISP, this type of attack will only work when the attacker
and victim are located in the same network segment.

By implementing the global whitelist validation, all attack scenarios from
the third category are prevented (rule ANS-2). The victims in these scenarios
are not on a global whitelist, therefore the responses sent to those victims are
limited.

Attacking a RRNS by amplifying data using an ANS will still be possible in
the suggested solution. This attack scenario is, however, not common. Hence, all
relevant attack scenarios are mitigated by implementing the proposed solution.

12

Chapter 5

Practical approach

5.1 Local whitelist

RRNSs form the client-side part of the DNS and are therefore located at the
network of an ISP or at a local network. At these locations it is known which
IPs are used inside the network. Therefore, creating a local whitelist is an easy
task.

5.2 Global whitelist

The need of a complete and up-to-date global whitelist demands an automated
method to collect as many RRNSs as possible. Scanning the complete IP space
as done by the Open Resolver Project! is not possible, because RRNSs using
a local whitelist should not reply to request coming from the scanning node.
Therefore, the action to whitelist a RRNS should be triggered from within the
RRNS’s network.

To make the whitelist as complete as possible, it should be possible for all
the users of the network to participate in the collection process. Users should
preferably be able to participate without the need to install software or without
executing difficult tasks.

One way to use crowd sourcing to collect RRNS addresses, is by logging
source addresses for DNS requests that are received at an ANS. Participants
only have to resolve the IP of a domain in that case. The ANS for that domain
should be configured to log all requests. There is, however, by default no way
to verify that the source addresses in the requests are not spoofed.

Source address spoofing can be prevented by using handshaking dialogues.
A handshaking dialogue can be implemented by generating an unique validation
token for every received request at the ANS. The generated validation token will
be included in the response that is sent to the RRNS. The RRNS should now
send the validation token back to the ANS, thereby verifying that the token
is received at a RRNS. It is clear that the original request does not contain a
spoofed source address when the validation token sent by the RRNS equals the
original generated token at the ANS.

Thttp://openresolverproject.org/

13

It is possible to have the RRNS automatically re-send the validation token
to the ANS. Section 3.6.2 (Aliases and canonical names) in RFC1034[10] states:

CNAME RRs cause special action in DNS software. When a name
server fails to find a desired RR in the resource set associated with
the domain name, it checks to see if the resource set consists of a
CNAME record with a matching class. If so, the name server in-
cludes the CNAME record in the response and restarts the query at
the domain name specified in the data field of the CNAME record.
The one exception to this rule is that queries which match the
CNAME type are not restarted.

This behavior can be used to create the handshaking dialogue. The ANS used for
the whitelist generation should always respond with a CNAME containing the
validation token. The RRNS will now resent the validation token in the attempt
to resolve the CNAME. The steps for executing a handshaking dialogue over
the DNS protocol are:

1. Client sent request for A record to RRNS
2. RRNS sent request for A record to ANS

3. ANS generates validation token and stores this token, together with the
source address of the request, in a database

4. ANS replies to RRNS with a CNAME resource record. The validation
token will be included in the data field of the CNAME record. The vali-
dation token will be succeeded with the domain name of the ANS.

5. The RRNS received a CNAME while requesting an A record, therefore a
new request will be executed. A request to resolve the CNAME containing
the validation token is sent to the ANS.

6. The ANS can mark the source address corresponding with the validation
token as validated. Finally the requested A record can be returned.

These steps are displayed in the sequence diagram in figure 5.1.

By exporting all source addresses from the database that are marked as
validated, a global whitelist is generated.

An attacker can add a server to the whitelist if he is able to retrieve the
validation token transmitted to that server. This can be done by having access to
the system or by successfully performing a Man-in-the-Middle attack. Another
way of retrieving the right validation token is by using brute forcing techniques,
i.e. trying all possibilities. The risk of brute force attacks can be mitigated by
limiting the time window in which a validation token is valid.

For this research, the custom ANS software is developed using python and
the Twisted? library. The validation tokens and whitelist entries are stored in
a MySQL database.

2http://twistedmatrix.com/

14

Client RRNS ANS DB

Arecord request
Ll

Arecord request .
L
save validation token
L
CMAME
€ —————_ CNAME response |
A record reguest for CNAME >
Veri
fy >
A record response
4 —————_Arecordres; ponse
A record response
&R recond resi ponse |
Client RRNS ANS 5]=]

Figure 5.1: Handshaking dialogue using CNAME resource records

15

Chapter 6

Practical approach
feasibility

6.1 Local whitelist

All modern RRNS software offers the possibility to limit requests using a local
whitelist. Enabling the use of local whitelists therefore only requires a change
in the RRNS configuration.

6.2 Global whitelist

ANS software does not provide the possibility to rate limit greylisted IPs. The
access control solutions that are available are designed for the use of a local
whitelist. It is not suitable for the high amount of entries that are available in
the global whitelist.

One location to include this additional software is in the code of the ANS
software. Unfortunately this will introduce some drawbacks. This solution
requires that the whitelist check has to be included in all available ANS software.
It will take a long time to finis, while there is a demand for a solution as soon
as possible.

Another method to perform global whitelist validation is by using firewall
software. Firewalls are specialized in dropping packets that meet a specified rule.
When using a firewall, a portable solution for multiple platforms is available.

To ensure a high adoption of global whitelist validation, the impact on the
performance of the DNS service caused by the validation should be limited. Two
benchmarks were executed to measure the impact.

Two identical servers (Dell PowerEdge R210, Intel Xeon L3426, 8GB RAM)
were used for the benchmarks. The two servers were connected with each other
using an Ethernet crossover cable. On the first server the DNS software and
firewall were installed. BIND! was used as DNS software, iptables? as firewall.
Ipset3, an iptables extension, was used to store the whitelist entries in a way

Thttp://www.isc.org/downloads/bind/
2http://www.netfilter.org/projects/iptables/index.html
Shttp://ipset.netfilter.org/

16

that can be used in an iptables rule.

The second server was deployed as monitor for the measurements. Dnsperf*
was used to send DNS requests and to measure the latency between sending the
request and receiving a response. The DNS requests were coming from the test
file® offered by Nominum.

6.2.1 Latency benchmark

The goal of the first benchmark was to see the difference in latency when using a
large amount of entries in ipset. The benchmark was executed with 21 different
ipset lists. The number of entries in these lists range from 0 to 1 million IPs,
with intervals of 50 thousand.

The script used to create pseudo-random IPs from the whitelists is listed in
Appendix A. The script used to create the ipset lists is listed in Appendix B.
The iptable rules used during the benchmark on the DNS server are:

iptables -A INPUT -m set --match-set <ipsetname> src -j DROP
iptables -A INPUT -j ACCEPT

When the source IP matches the whitelist the lookup will stop, resulting in a
lower latency. To prevents this it was made sure that the IP of the monitor
system was not whitelisted. The command used to execute the benchmarks is:

dnsperf -d queryfile-10million -s 192.168.1.50 -Q 200000

The @ parameter limits the maximum number of DNS requests send per second.
By limiting at 200 thousand requests we can make sure that the CPU of the
monitor server is not completely used, which could alter the results.

For all performed benchmarks, using the 21 different ipsets, the average
latency over one million requests is around 0.13 milliseconds. From these results,
the conclusion can be drawn that the latency for DNS lookups does not increase
when a whitelist containing one million IPs is used. The benchmark results are
displayed in the chart in figure 6.1. Appendix C provides a complete overview
of the results.

6.2.2 CPU load benchmark

The goal of the second benchmark is to measure difference in CPU load on the
DNS server when it is configured to limit access to global whitelisted IPs. The
benchmark consists of three test-scenarios:

No iptables Measurements of the DNS server’s CPU load when no global
whitelist validation is performed.

Whitelisted Measurements of the DNS server’s CPU load which is configured
to perform global whitelist validation. In this scenario, the IP of the
monitor server is on the whitelist.

4http://www.nominum. com/support/measurement-tools/
5ftp://ftp.nominum.com/pub/nominum/dnsperf/data/queryfile-example-10million-201202.

gz

17

Average latency, 10 milion requests, 200K requests per second

1
09
08
07
06
05
04

awg latency (ms)

03

02
| o . S — —— — S—— — S Sl S— — m— — —
01

0
0 50 100 150 200 250 300 350 400 450 500 6550 G600 G50 700 750 8OO 850 900 950 1000

ipset size (x1000)

Figure 6.1: Latency when using ipset

Greylisted Measurements of the DNS server’s CPU load which is configured to
perform global whitelist validation. In this scenario, the IP of the monitor
server is not on the whitelist. The firewall should therefore rate limit
request coming from the monitor server.

For the last two scenarios a whitelist containing one million IPs was used.

The CPU utilization on the DNS server is the average of four measurements,
each running for 15 seconds. The tool used to measure the CPU load is sar.
The executed command is:

sar —u 15 4

The iptables rules used in this benchmark that accept packets coming from
whitelisted IPs and ratelimit packets coming from greylisted IPs are:

iptables -A INPUT -p udp --dport 53 -m set —--match-set whitelist
src —-j ACCEPT

iptables -A INPUT -p udp --dport 53 -m recent --rcheck --seconds
10 --hitcount 2 --name GREYLIST -j DROP

iptables -A INPUT -p udp --dport 53 -m recent --set --name
GREYLIST -j ACCEPT

The dnsperf command was executed nine times for each scenario. During the
nine measurements, the amount of requests send per second was increased. The
number of requests send per second ranged from 0 to 200 thousand and increased
with an interval of 25 thousand at each measurement. The executed dnsperf
command is:

dnsperf -d queryfile-10million -s 192.168.1.50 -Q <requests_per_second>

This benchmark showed that the CPU utilization of the DNS server does
not increase when iptables is configured to perform global whitelist validation.
Rate limiting requests did not consume enough CPU load to be visible in the
results. Because BIND does not have to handle limited requests, the CPU load
is a lot less when using rate limiting. These results are displayed in the chart
in figure 6.2. See Appendix D for the complete benchmark results.

18

CPUload, 1 milion whitelisted |Ps

80
70
60

50
== o iptahles
a0 —4— whistelisted
greylisted

30

CPU load DMNS server (%)

20
10

25 50 75 100 125 150 175 200

DS reguests per second (x1000)

Figure 6.2: CPU load when using ipset

6.2.3 Whitelist manager

To simplify the implementation of global whitelist validation, the global whitelist
management tool is developed. This tool downloads the most recent list of
RRNS IPs and validates its integrity using md5 hashes. After downloading the
list an ipset is created and all downloaded IPs are added to the list. Finally the
tools add the right rules to iptables. The tool is provided under the MIT license
and is listed in Appendix E.

19

Chapter 7

Considerations and future
work

The feasibility of the practical approach depends on whether or not enough
RRNS servers can be collected by our custom ANS software. After all RRNSs
are collected by means of crowd sourcing, the global whitelist validation can be
applied without negative impact.

For this research benchmarks were performed to measure the impact of val-
idating global whitelists using iptables. Iptables is included in the Linux kernel
and therefore not portable to different operation systems. Future research can
be done for performance benchmarks on firewall software that is used by differ-
ent operating systems. Widely used firewall software for BSD based operating
systems is PF''. We do not see a reason to suspect worse performance when
using different firewall software.

Thttp://www.openbsd.org/faq/pf/

20

Chapter 8

Conclusion

This research proposes to mitigate DNS Amplification Attacks by limiting DNS
services to intended users. Intended users for RRNSs are local users, intended
users for ANSs are RRNSs.

Whitelists are needed to specify the intended users. Creating a whitelist for
a RRNS is easy, since the local users are known by the network administrator.
This paper proposes a method to generate a whitelist containing all global RRNS
servers to be used by an ANS.

Applying a global whitelist can be done using standard firewall software.
This research shows that there is no noticeable performance impact when ’ipt-
ables’ is used for global whitelist validation. It is suggests that greylisting is
applied to ANS servers to allow for debugging.

To prove that the proposed solution mitigates DNS Amplification Attacks,
all relevant attack scenarios are evaluated. This research also proves that the
proposed solution is practically feasible, assuming enough RRNS servers can be
collected.

21

Bibliography

[1]
2]

William Allen. improving tcp security with robust cookies.

E Allman, J Callas, M Delany, M Libbey, J Fenton, and M Thomas. Do-
mainkeys identified mail (dkim) signatures. Technical report, RFC 4871,
May, 2007.

Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose.
Dns security introduction and requirements. Technical report, RFC 4033,
March, 2005.

J Damas and F Neves. Preventing use of recursive nameservers in reflector
attacks. Technical report, BCP 140, RFC 5358, October, 2008.

L Donnerhacke. Dns dampening, september 2012.

Homeland Security Federal Network Security. Domain name system (dns)
security reference architecture. Technical report, 2011.

Paul Ferguson. Network ingress filtering: Defeating denial of service attacks
which employ ip source address spoofing. 2000.

Fanglu Guo, Jiawu Chen, and Tzi-cker Chiueh. Spoof detection for pre-
venting dos attacks against dns servers. In Distributed Computing Systems,
2006. ICDCS 2006. 26th IEEE International Conference on, pages 37-37.
IEEE, 2006.

Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Ste-
fanos Gritzalis. A fair solution to dns amplification attacks. In Digital
Forensics and Incident Analysis, 2007. WDFIA 2007. Second International
Workshop on, pages 38-47. IEEE, 2007.

Paul Mockapetris. Rfc 1034: Domain names-concepts and facilities. 1987.

Paul Mockapetris. Rfc 1035: Domain names: implementation and specifi-
cation. 1987.

Jon Postel. Rfc 768: User datagram protocol. 1980.
Jon Postel. Rfc 793: Transmission control protocol. 1981.

Matthew Prince. The ddos that almost broke the internet. http://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet, March
2013.

22

[15] Matthew Prince. The ddos that knocked spamhaus offline
(and how we mitigated it). http://blog.cloudflare.com/
the-ddos-that-knocked-spamhaus-offline-and-ho, March 2013.

[16] P Vixie. Dns response rate limiting (dns rrl), april 2012.

[17] Paul Vixie. Extension mechanisms for dns (edns0). 1999.

23

UL W N =

© 0 N O

11
12
13

Appendix A

Pseudo-random IP list
generation script

import random

ips= dict ()
for i in range(13000000):
ips[’. .join(str(random.randint (1,255)) for x in range

(4))] =1
print ”IPs generated, time to write”

ipfile = open(’ipfile_10million’, ’w’)
for ip in ips.keys():

ipfile.write ("%s\n” % ip)

print "%d unique IPs added to file” % len(ips.keys())

24

© 00 N O Ut W N

— =
= o

Appendix B

Ipset whitelist generation
script

#!/bin/bash

for i in {0..1000000..50000}; do
echo ‘date*
echo ”ipset create whitelist$i hash:ip maxelem $i”
‘ipset destroy whitelist$i ¢
‘ipset create whitelist$i hash:ip maxelem $i
ips=‘head —n $i ipfile_10million ¢;
for ip in $ips; do

‘ipset add whitelist$i $ip®

done

done

<

25

Appendix C

Latency benchmark results

of entries in ipset | Average latency over one million requests (in ms)

0 0.129
50,000 0.126
100,000 0.132
150,000 0.133
200,000 0.131
250,000 0.128
300,000 0.132
350,000 0.127
400,000 0.128
450,000 0.132
500,000 0.129
550,000 0.129
600,000 0.13
650,000 0.133
700,000 0.128
750,000 0.13
800,000 0.13
850,000 0.13
900,000 0.128
950,000 0.13
1,000,000 0.127

26

Appendix D

CPU utilization benchmark

results
CPU load CPU load CPU load
Requests per second | no iptables | requester whitelisted | requester greylisted

0 0.06% 0.06% 0.06%
25,000 12.11% 11.59% 0.06%
50,000 23.14% 23.02% 0.06%
75,000 26.63% 24.92% 0.06%
100,000 36.03% 35.22% 0.06%
125,000 44.37% 44.12% 0.06%
150,000 54.36% 53.83% 0.06%
175,000 60.9% 60.68% 0.06%
200,000 67.49% 67.28% 0.06%

27

© 00 N O Ut W N

— s e
w N = O

14
15

16
17
18
19
20
21
22
23
24

25
26
27
28
29

Appendix E

Global whitelist
management tool

#!/usr/bin/python
import commands
import subprocess
import urllib
import tarfile
import time
import os

import hashlib
import shutil

def check_requirements():
ipset_status = commands. getstatusoutput (”hash ipset”)
iptables_status = commands. getstatusoutput (”hash
iptables”)
if ipset_status[0] != 0 or iptables_status[0] != 0:
raise Exception(”Iptables and/or ipset not found,
please intstall these dependencies first”)

def md5_for_file(f):
md5 = hashlib.md5()
for ip in f:
md5. update (ip)
return md5. hexdigest ()

def retrieve_whitelist ():

whitelist = urllib.urlopen(”http://reliablenameservers.
org/whitelists/latest_whitelist”)

temp_path = 7 /tmp/whitelist/%d” % int (time.time())
temp_name = os.path.join (temp_path, ”"latest_whitelist”)
os. makedirs (temp_path)
temp = open (temp-name, ”wr”)
temp. write (whitelist .read ())

28

30
31
32
33
34
35
36
37

38
39

40

41
42
43
44
45

46
47
48
49
50
51

52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

temp . flush ()
temp. close ()

temp = open (temp_name)

tar = tarfile.open(mode="r:gz”, fileobj=temp)
tar.extractall (temp_path)

latest_whitelist = open(os.path.join (temp_path, 7
whitelist”), 717)

if mdb_for_file(latest_whitelist) != open(os.path.join(
temp_path, ”whitelist.md5”)).read():
raise Exception(”Download seems to be corrupt, please
run again.”)

return latest_whitelist

def fill_ipset (latest_whitelist):
subprocess. call (["ipset”, ”"create”, ”whitelist”, ”hash:
ip”, "maxelem”, ”10000007])
latest _whitelist .seek (0)
for ip in latest_whitelist:
subprocess. call ([7ipset”, 7add”, ”whitelist”, ip])

def add_iptables_rules():
subprocess.call ("iptables —A INPUT —p udp —dport 53 —m
set —match—set whitelist src —j ACCEPT” , shell=

True)
subprocess.call ("iptables —A INPUT —p udp —dport 53 —m
recent —rcheck —seconds 10 —hitcount 2 ——mname

GREYLIST —j DROP” , shell=True)
subprocess.call ("iptables —A INPUT —p udp —dport 53 —m
recent —set —name GREYLIST —j ACCEPT” , shell=True

)

def cleanup():
shutil.rmtree (temp_path)

if __name_._. = ’__main__":
print ” Reliable Nameserver installer”
check_requirements ()
print ”Download latest whitelist”,
latest_whitelist = retrieve_whitelist ()
print 7 — Done”
print "Add whitelisted IPs to ipset”,
fill_ipset (latest_whitelist)

print 7 — Done”
iptables = 7”7
while iptables.lower() not in ["y”, "n”]:

29

69

70
71
72
73

iptables = raw_input(”Let installer add iptable rules
? (y/n): ")
if iptables.lower() = 7y”:
print "Add iptables rules”
add_iptables_rules ()
print 7 — Done”

30

