Container Network Solutions

Research Project 2

x |
X
UNIVERSITY OF AMSTERDAM

Joris Claassen
System and Network Engineering

University of Amsterdam

Supervisor:

Dr. Paola Grosso

July 2015

mailto:joris.claassen@os3.nl
https://www.os3.nl/
https://www.uva.nl/

Abstract

Linux container virtualization is getting mainstream. This research focuses
on the specific ways containers can be networked together; be it an overlay
network, or the actual link from the container to the network. It gives an
overview of these networking solutions. As most overlay solutions are not
quite production ready yet, testing their performance is not really interest-

ing. This research includes a literature study on the overlay solutions.

The kernel modules used to link the container to the network are much
more mature, and they are benchmarked in this research. The results of
the tests performed in this research show that while the veth kernel module
is the most mature, it has been surpassed by the macvlan kernel module in
raw performance. The new ipvlan kernel module also gets assessed in this

research, but is still very immature and buggy.

Contents

Acronyms i1l
1 Introduction il
2 Background 3
2.1 Container technology
2.1.1 NamesSpaces v v v v v e e e e

2.1.2 CEIOUPS « « « v v e i e e e Bl

2.2 Working with Docker A
2.3 Related work

3 Container networking 6]
3.1 Overlay networks 6

3. 1.1 Weave e e e 6

3.1.2 Project Calico @

3.1.3 Socketplane and libnetwork B

3.2 Kernelmodules B
321 wveth e B

3.22 openvswitch Lo 8]

3.23 macvlan Ia

324 dpvlan ... 11

4 Experimental setup [12]
4.1 Equipment
4.2 Tests o e 13
4.2.1 Local testing !

CONTENTS

4.2.2 Switched testing oo 151

4.3 Issues e 106l

5 Performance evaluation ld
5.1 Local testing i
5.1.1 TCP 17

5.1.2 UDP I

5.2 Switched testing 19l
5.2.1 TCP [19]

5.2.2 UDP 20

6 Conclusion 2711
6.1 TFuture work
References 23]

ii

Acronyms

ACR
cgroups
(610)%%
IPC
KVM
LXC
MNT
NET
ocCP
PID
SDN
SDVN

UTS

App Container Runtime
control groups

copy-on-write

Inter-process communication
Kernel-based Virtual Machine
Linux Containers

Mount

Networking

Open Container Project
Process ID

Software Defined Networking
Software Defined Virtual Networking

Unix Time-sharing System

VXLAN Virtual Extensible LAN

iii

Introduction

As operating-system-level virtualization is getting mainstream, so do the parts of com-
puting that it relies on. Operating-system-level virtualization is all about containers in
a Linux environment, zones in a Solaris environment, or jails in an BSD environment.
Containers are used to isolate different namespaces within a Linux node, providing a
system that is similar to virtual machines while all processes being run within containers
on the same node interact with the same kernel.

At this moment Docker(3]) is the de-facto container standard. Docker used to rely
on Linux Containers (LXC)(10) for containerization, but has shifted to their own
libcontainer(8) from version 1.0. On December 1, 2014, CoreOS Inc. announced
they where going to compete with the Docker runtime by launching rkt(I8); a more
lightweight App Container Runtime (ACR) in conjunction with AppC(2); a lightweight
container definition. As of June 22, 2015, both parties (and a lot of other tech giants)
have come together, and announced a new container standard: the Open Container
Project (OCP)(L1)), based on AppC. This allows for containers to be interchangeable
while keeping the possibility for vendors to compete using their own ACR and support-

ing services (e.g. clustering, scheduling and/or overlay networking).

INTRODUCTION

Containers can be used for a lot of different system implementations, of which almost
all require interconnection; at least within the node itself. In addition to connecting
containers within nodes, there are additional connectivity issues coming up when in-

terconnecting multiple nodes.

The aim of this project is to get a comprehensive overview of most network-
ing solutions available for containers, and what their relative performance

trade-offs are.

There is a multitude of overlay networking solutions available, which will be com-
pared based on features. The kernel modules that can be used to connect a container
to the networking hardware will be compared based on features and evaluated for their

respective performance. This poses the following question:

How do virtual ethernet bridges perform, compared to macvlan and ipvlan?

In terms of TCP throughput?

In terms of UDP throughput?

In terms of scalability?

In a single-node environment?

In a switched multi-node environment?

Background

2.1 Container technology

2.1.1 Namespaces

A container is all about isolating namespaces. The combination of several isolated
namespaces provides a workspace for a container. Every container can only access the
namespaces it was assigned, and cannot access any namespace outside it. Namespaces

that are isolated to create a fully isolated container are:

e Process ID (PID) - Used to isolation processes from each other

e Networking (NET) - Used to isolate network devices within a container

Mount (MNT) - Used to isolate mount points

Inter-process communication (IPC) - Used to isolate access to IPC resources

e Unix Time-sharing System (UTS) - Used to isolate kernel and version identifiers

2.1.2 cgroups

control groups (cgroups) are another key part of making containers a worthy competitor
to VMs. After isolating the namespaces for a container, every namespace still has
full access to all hardware. This is where cgroups come in. They limit the available
hardware resources to each container. For example the amount of CPU cycles that a

container can use could be limited.

2.2 Working with Docker

2.2 Working with Docker

As stated in the introduction, Docker is the container standard at this moment. It
has not gained that position by being the first, but by making container deployment
accessible for the masses. Docker provides a service to easily deploy a container from
a repository or by building a Dockerfile. A Docker container is built up out of several
layers with an extra layer on top for the changes made for this specific container.
These layers are implemented using storage backends, of which most are copy-on-write
(COW), but there is also a non-COW fallback backend in case the module used is not
supported by the used Linux kernel.

An example of the ease of use: to launch a fully functional Ubuntu container on a

freshly installed system a user only has to run one command, as shown in code snippet

2.1

Code snippet 2.1: Starting a Ubuntu container

core@nodel ~ $ docker run —t —i —name=ubuntu ubuntu

Unable to find image ’ubuntu:latest’ locally

latest: Pulling from ubuntu

428b411c¢28f0: Pull complete

435050075b3f: Pull complete

9fd3c8c9af32: Pull complete

6d4946999d4f: Already exists

ubuntu:latest: The image you are pulling has been verified.
— Important: image verification is a tech preview feature
— and should not be relied on to provide security.

Digest: sha256:45e42b43f2ff4850dcf52960ee89¢21c¢da779ec657302d36

faaaa07d880215dd9

Status: Downloaded newer image for ubuntu:latest

root@881b59f36969:/# lsb_release —a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 14.04.2 LTS
Release: 14.04

Codename : trusty
root@881b59f36969:/# exit

exit

Even when a container has exited the COW filesystems (including the top one) will

remain on the system until the container gets removed. In this state the container is

2.3 Related work

not consuming any resources with exception of the disk apace of the top COW image,

but it is still in standby to launch processes instantaneously. This can be seen in code
snippet [2.2

Code snippet 2.2: List of containers

core@nodel ~ $ docker ps —a

CONTAINER ID IMAGE COMMAND CREATED
881b59f36969 ubuntu: latest ”/bin/bash” 6 minutes ago
STATUS PORTS NAMES
Exited (127) About a minute ago ubuntu

Docker can also list all images which are downloaded into the cache, as can be seen
in code snippet Images that are not available locally will be downloaded from a
configured Docker repository (Docker Hub by default).

Code snippet 2.3: List of images

core@nodel ~ $ docker images
REPOSITORY TAG IMAGE 1D CREATED VIRTUAL SIZE
ubuntu latest 6d4946999d4f 3 weeks ago 188.3 MB

2.3 Related work

There is some related research done on containers and Software Defined Networking
(SDN)s by |Costache et al.| (22]). Research on Virtual Extensible LAN (VXLAN), which
is another tunneling networking model that could apply to containers, is widely avail-
able. A more recent paper by [Felter et al.| (23) does report on performance differences
on almost all aspects between Kernel-based Virtual Machine (KVM) (7)) and Docker,
but does not take into account different networking implementations. The impact of
virtual ethernet bridges and Software Defined Virtual Networking (SDVN)s (in par-
ticular, Weave (20)) has already been researched on by Kratzke (24). Marmol et al.
go a lot deeper into the theory of methods of container networking in Networking in

containers and container clusters(25]), but do not touch the performance aspect.

3

Container networking

Container networking could be about creating a consistent network environment for a
group of containers. This could be achieved using an overlay network, of which multiple
implementations exist.

There is also another part of container networking - the way a networking namespace
connects to the physical network device. There are multiple Linux kernel modules that

allow a networking namespace to communicate with the networking hardware.

3.1 Overlay networks

To interconnect multiple nodes that are running containers both consistent endpoints
and a path between the nodes is a must. When the nodes are running in different
private networks which are using private addressing, connecting internal containers can
be troublesome. In most network environments there is not enough routable (IPv4)
address space for all servers, although with IPv6 on the rise this is getting less and less

of an issue.

3.1.1 Weave

Weave(20) is a custom SDVN solution for containers. The idea behind this is that
Weave launches one router container on every node that has to be interconnected, after
which the weave routers set up tunnels to each other. This enables total freedom to
move containers between hosts without any reconfiguration. Weave also has some nice

features that enable an administrator to visualize the overlay network. Weave also

3.1 Overlay networks

weave router weave router weave router
(container) (container) (container) datastore
nginx nginx haproxy nginx mysq|
node1 node2 node3
network

Figure 3.1: Example Weave overlay networking visualized

comes with a private DNS server; weaveDNS. It enables service discovery and allows
to dynamically reallocate DNS names to (sets of) containers, which can be spread out
over several nodes.

In figure we see 3 nodes running 5 containers of which a common database
container on one node is being used by multiple webservers. Weave makes all containers
work as if they where on the same broadcast domain, allowing simple configuration.

Kratzke(24) has found Weave Net in its current form to decrease performance from
30 to 70 percent, but Weaveworks is working on a new implementation(2I) based on
Open vSwitch(I3) and VXLAN that should dramatically increase performance. This

new solution should work in conjunction with libnetwork.

3.1.2 Project Calico

While Project Calico(I7)) is technically not an overlay network but a ”pure layer 3
approach to virtual networking” (as stated on their website), it is still worth mentioning
because it does strive for the same goals as overlay networks. The idea of Calico is that
data streams should not be encapsulated, but routed instead.

Calico uses a vRouter and BGP daemon on every node (in a privileged container),

which instead of creating a virtual network modify the existing iptables rules of the

3.2 Kernel modules

nodes they run on. As all nodes get their own private AS, the routes to containers
running within the nodes are distributed to other nodes using a BGP daemon. This
ensures that all nodes can find paths to the target container’s destination node, while
even making indirect routes discoverable for all nodes, using a longer AS path.

In addition to this routing software, Calico also makes use of one ”orchestrator
node”. This node runs another container which includes the ACL management for the

whole environment.

3.1.3 Socketplane and libnetwork

Socketplane is another overlay network solution specifically designed to work around
Docker. The initial idea of Socketplane was to run one controller per node which then
connected to other endpoints. Socketplane was able to ship a very promising technology
preview before they got bought by Docker, Inc. This setup was a lot like the one of
Weave, but it was based on Open vSwitch and VXLAN from the beginning.

Docker then put the Socketplane team to work on libnetwork(9)). libnetwork in-
cludes an experimental overlay driver, which will use veth pairs, Linux bridges and
VXLAN tunnels to enable an out of the box overlay network. Docker is hard at work
to support pluggable overlay network solutions in addition to its current (limited) net-
work support using libnetwork, which should ship with Docker 1.7.

Most companies working on overlay networks have announced support for libnet-
work. These include, but are not limited to: Weave, Microsoft, VMware, Cisco, Nuage

Networks, Midokura and Project Calico.

3.2 Kernel modules

Different Linux kernel modules can be used to create virtual network devices. These

devices can then be attached to the correct network namespace.

3.2.1 veth

The veth kernel module is a pair of networking devices which are piped to each other.
Every bit that enters the one end, comes out on the other. One of the ends can then be
put in a different namespace, as visualized in the top part of figure[3.2] This technology
is pioneered by Odin’s Virtuozzo(19)) and its open counterpart OpenVZ(15]).

3.2 Kernel modules

default net ns nso

enp1s0 W eth0
driver \ veth / \ veth / kernel

nic

default net ns nso ns1

/enp‘IsO dockerf\/rethnso vethns1 ethO eth0

driver bridge/\ veth veth/ \veth / veth /kernel

nic

Figure 3.2: veth network pipes visualized

veth pipes are often used in combination with Linux bridges to provide an easy
connection between a namespace and a bridge in the default networking namespace.
An example of this is the docker0O bridge that is automatically created when Docker is
started. Every Docker container gets a veth pair of which one side will be within the
containers’ network namespace, and the other connected to the bridge in default net-
work namespace. A datastream from ns0 to nsl using veth pipes (bridged) is visualized
in the bottom part of figure

3.2.2 openvswitch

The openvswitch kernel module comes as part of the mainline Linux kernel, but is
operated by a seperate piece of software. Open vSwitch provides a solid virtual switch,
which also features SDN through OpenFlow(12)). docker-ovs(4)) was created by and
using Open vSwitch for the VXLAN tunnels between nodes, but was still using veth
pairs oposed to internal bridge ports. Internal bridges have a higher throughput than
veth pairs(14) when running multiple threads.

Putting these ports in a different namespace will confuse the Open vSwitch con-

3.2 Kernel modules

(macvlan enslaved)

default net ns ns0 nsi
enp1s0 eth0 eth0
driver
macvlan macvlan kernel

nic pseudo-bridge

/=

{ 802.1Qbg enabled switch

Figure 3.3: macvlan kernel module visualized

troller, effectively not making internal ports usable in container environments. Open

vSwitch can still be a very good replacement for the default Linux bridges, but it will

make use of veth pairs for the connection to other namespaces.

3.2.3 macvlan

macvlan is a kernel module which enslaves the driver of the NIC in kernel space. The

module allows for new devices to be stacked on top of the default device, as visualized

in figure [3.3] These new devices have their own MAC address and reside on the same

broadcast domain as the default driver. macvlan has four different modes of operation:

e Private - no macvlan devices can communicate with each other; all traffic from a

macvlan device which has one of the macvlan devices as destination MAC address

get dropped.

e VEPA - devices can not communicate directly, but using a 802.1Qbg(1) (Edge

Virtual Bridging) capable switch the traffic can be sent back to another macvlan

device.

e Bridge - same as VEPA with the addition of a pseudo-bridge which forwards

traffic using the RAM of the node as buffer.

10

3.2 Kernel modules

e Passtru - passes the packet to the network; due to the standard behavior of a
switch not to forward packets back to the port they came from it is effectively

private mode.

3.2.4 ipvlan

ipvlan is very similar to macvlan, it does also enslave the driver of the NIC in kernel
space. The main difference is that the packets that are being sent out all get the same
MAC address on the wire. The forwarding to the correct virtual device is being done

based on layer 3 address. It has two modes of operation:

e [L.2 mode - device behaves as a layer 2 device; all TX processing up to layer 2
happens in the namespace of the virtual driver, after which the packets are being
sent to the default networking namespace for transmit. Broadcast and multicast
are functional, but still buggy at the current implementation. This causes for

ARP timeouts.

e [.3 mode - device behaves as a layer 3 device; all TX processing up to layer
3 happens in the namespace of the virtual driver, after which the packets are
being sent to the default network namespace for layer 2 processing and transmit
(the routing table of the default networking namespace will be used). Does not

support broad- and multicast.

11

4

Experimental setup

4.1 Equipment

| out of band switch (remote control channel) |

testing environment

e

Figure 4.1: Physical test setup

Equipment used to perform the benchmark tests proposed in section [I| require a power-

ful hardware setup. The overview of the setup can be seen in figure The hardware

12

4.2 Tests

Nodes Switch

CPU | 3x Intel(R) Xeon(R) CPU E5620 @ 2.40GHz Model | Dell PowerEdge 6248
RAM | 24GB DDR3 1600Mhz NIC 3x 10Gb LR SM SFP+

NIC | 10Gb LR SM SFP+

Table 4.1: Hardware used for testing

used can be found in table[4.1l Nodes from the DAS4 cluster where reused to create this
setup. The testing environment was fully isolated so there where no external factors

influencing the test results.

4.2 Tests

The software used for the testing setup was CoreOS as this is an OS which is actively
focused on running containers and has a recent Linux kernel (mainline Linux kernel
updates are usually pushed within a month). The actual test setups where created
using custom made scripts and can be found in and

To create the ipvlan interfaces required for the testing using these scripts, I modified
Jérome Petazzoni’s excelent Pipework(16]) tool to support ipvlan (in L3 mode). The
code is attached infappendix C] All appendices can also be found on https://github.
com/jorisc90/rp2_scripts.

Tests were ran using using the iperf3(5) measurement tool from within containers.
iperf3 (3.0.11) is a recent tool that is a complete and more efficient rewrite of the orignal
iperf. Scripts were created to launch these containers without too much delay.

All tests ran using exponentially growing numbers ($N in figure and of
container pairs; ranging from 1 to 128 for TCP, and 1 to 16 for UDP. This is because
UDP starts filling up the line in such a way that iperf3’s control messages get blocked
with higher number of container pairs, thus stopping measurements from being reliable.
The tests where repeated 10 times to calculate the standard error values. The three
compared network techniques are: veth bridges, macvlan (bridge mode) and ipvlan (L3
mode).

Due to the exponentially rising number of container pairs, a exponentially decreased
throughput was expected both for TCP as with UDP. UDP performance was expected
to be better than TCP because of the simpler protocol design.

13

https://github.com/jorisc90/rp2_scripts
https://github.com/jorisc90/rp2_scripts

4.2 Tests

4.2.1 Local testing

The local testing was performed on one node. This means a 2 up to 256 containers
where being launched on one node for these tests, running 128 data streams at a time.
The scrips where launched from the node itself to minimize any latencies.

An example of a test setup using 1 container and macvlan network devices (these

commands are executed using a script):

Code snippet 4.1: Starting a macvlan server container

docker run —dit —net=none —mname=iperf3_s_1 iperf/iperf
sudo ./pipework/pipework enpb5s0 iperf3_s_1 10.0.1.1/16
docker exec iperf3_s_1 iperf3d —s -D

This spawns the container, after which it attaches a macvlan device to it. Then it
launches the iperf3 server in daemon mode within the container.
To let the client testing commence, the following commands where used to start the

test (also using a script):

Code snippet 4.2: Starting a macvlan client container

docker run —dit —net=none —name=iperf3_c_1 iperf/iperf

sudo ./pipework/pipework enpb5s0 iperf3_c_1 10.0.2.1/16

docker exec iperf3_c_1 iperf3 —c 10.0.1.1 —p 5201 —f m O 1 M
— 1500 > iperf3_1.log &

This spawns the container, after which it attaches a macvlan device to it. Then it
launches the iperf3 client which connects to the iperf3 server instance and saves the log

files in the path where the script is executed.

SN pair\

default net ns iperf s_$N | iperf c_$N
node1 10.0.1.$N/16|10.0.2.$N/16
enp1s0 eth0 eth0
$networking_solution kemel
nic

Figure 4.2: Local test setup

14

4.2 Tests

4.2.2 Switched testing

Switched testing was very similar to the local testing, but scripts had to be ran from an
out-of-band control channel to ensure the timing was correct. This was achieved using
node3d which ran commands using SSH over the second switch, while waiting for the
command on nodel to finish before sending a new command to node2 and vice versa.

While the amount of data streams being ran are the same, the workload is split

between two nodes; thus launching 1 up to 128 containers per node. This can be seen

in figure [£.3]
/?m

default net ns iperf_s_$N default net ns iperf_c_$N
node1 10.0.1.$N/16 node2 10.0.2.$N/16
enp1s0 eth0 enp1s0 eth0
$networking_solution kernel $networking_solution kernel
nic nic
eth0 eth1
{ Dell PowerConnect 6248

Figure 4.3: Switched test setup

15

4.3 Issues

4.3 Issues

While building a test setup like this there are always some issues that are being ran

into. A quick list of the issues that cost me the most time to solve:

e Figuring out that one of the 4 10Gbit NIC slots on the switch was broken, instead
of the SFP+ module or the fiber

e Getting CoreOS to install and login without a IPv4 address (coreos-install has to
be modified)

e Figuring out that the problem of iperf3 control messages working but actual data
transfer being zero was due to jumbo frames feature not being enabled on the

switch; and not due to a setting on the CoreOS nodes

e Debugging ipvlan L2 connectivity and finding(/6]) that broadcast /multicast frames
still get pushed into the wrong work-queue - instead opted for L3 mode for the

tests

16

Performance evaluation

This chapter describes the results of the tests defined in chapter

5.1 Local testing

5.1.1 TCP
Local TCP throughput per container pair
30,000 macvlan_1500
veth_1500
ipvlan_1500
25000 macvlan_9000
! veth_9000

ipvlan_9000

20,000

15,000

10,000

Throughput per container pair in Mbit/s

5000

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of container pairs

Figure 5.1: Local TCP test results for MTU 1500 (left) and MTU 9000 (right)

5.1 Local testing

As can be seen in figure the ipvlan (L3 mode) kernel module has the best perfor-
mance in the tests. Note that because the device is in L3 mode, the routing table of the
default namespace is used, and no broad- and/or multicast traffic is forwarded to these
interfaces. veth bridges perform 2.5 up to 3 times as low as macvlan (bridge mode) and
ipvlan (L3 mode). There is no big difference in performance behavior between MTU
1500 and MTU 9000.

5.1.2 UDP
Local UDP throughput per container pair
8000 macvlan_1500
veth_1500
7000 ipvlan_1500

macvlan_9000
veth_9000
ipvlan_9000

6000

5000

4000

3000

2000

Throughput per container pair in Mbit/s

1000

1 2 4 8 16 1 2 4 8 16
Number of container pairs

Figure 5.2: Local UDP test results for MTU 1500 (left) and MTU 9000 (right)

The performance displayed in figure [5.2| is very different from the one of figure [5.1
The hypothesis is that this is because either iperfd is consuming more CPU cycles
by measuring the jitter of the UDP packets and/or the UDP offloading in the kernel
module (of either the node’s 10Gbit NIC or one of the virtual devices) is not optimal.
More research should be put looking into this anomaly.

The measured data shows that ipvlan (L3 mode) and veth bridges do not perform
well in UDP testing. veth bridges do show the expected behavior of exponential de-

5.2 Switched testing

creasing performance after two container pairs. macvlan (bridge mode) does perform
reasonably well, probably accounting to the network pseudo-bridge in RAM. The total

throughput is still 3.5 times as low as with macvlan (bridge mode) TCP traffic streams.

5.2 Switched testing

5.2.1 TCP
Switched TCP throughput per container pair
10,000
macvlan_1500
veth_1500
ipvlan_1500
macvlan_9000
,, 2000 veth_9000
= ipvlan_9000
Q0
=
=
AL
T 6000
f .
[0}
C
5
C
o
(V]
5 4000
Q.
o
=}
o
ey
bo
>
e
£ 2000
'_
0
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Number of container pairs

Figure 5.3: Switched TCP test results for both MTU 1500 (left) and MTU 9000 (right)

The switched TCP performance is a very close call between all networking solutions,
as can be seen in figure [5.3] The throughput of all three kernel modules is exponen-
tially decreasing as was expected. Displayed is that the MTU 9000 performance gives
2Gbit/sec extra performance over MTU 1500.

19

5.2 Switched testing

5.2.2 UDP
Switched UDP throughput per container pair
6000 macvlan_1500
veth_1500
= ipvlan_1500
macvlan_9000
5000
veth_9000
= ipvlan_9000

4000

3000

2000

1000

Throughput per container pair in Mbit/s

1 2 4 8 16 1 2 4 8 16
Number of container pairs

Figure 5.4: Switched UDP test results for MTU 1500 (left) and MTU 9000 (right)

Again, the UDP performance graphs are not so straight forward. Figure shows
that on MTU 1500 macvlan (brdige mode) outperforms both ipvlan (L3 mode) and
veth bridges. As with local UDP testing the CPU gets fully utilized using these bench-
marks. The MTU 9000 results show that performance is really close and exponentially

decreasing when there are less frames being sent.

20

6

Conclusion

When this project started, the aim was to get a comprehensive overview of most net-
working solutions available for containers, and what their relative performance trade-
offs were.

There are a lot of different options to network containers. Whereas most overlay
solutions are not quite production ready just yet, they are in very active development
and should be ready for testing soon. Though overlay networks are nice for easy con-
figuration, they per definition impose overhead. Therefore, where possible, it would be
preferable to route the traffic over the public network without any tunnels (the traffic
should of course still be encrypted). Project Calico seems like a nice step in-between,

but it still imposes overhead through running extra services in containers.

There was specific interest in the performance of kernel modules used to connect con-
tainers to network devices. This resulted in a performance evaluation of these modules.

Only veth and macvlan are production ready for container deployments yet. ipvlan
in L3 mode is getting there, but L2 mode is still buggy and getting patched. For the
best local performance within a node, macvlan (bridge mode) should be considered. In
most cases, the performance upsides outweigh the limits that a separate MAC address
for each container impose. There is a downside for very massive container deployments
on one NIC: the device could go into promiscuous mode if there are too many MAC
addresses associated to it. This did not occur in my tests, but they where limited to 256

containers per node. If the container deployment is in a shortage of IP(v6) resources

21

6.1 Future work

(and there should really be no reason for this), veth bridges can be used in conjunction
with NAT as a stopgap.

In switched environments there is really not so much of a performance difference,
but the features of macvlan could be attractive for a lot of applications. A separate

MAC address on the wire allows for better separation on the network level.

6.1 Future work
There are some results in that are not completely explainable:

e The strangely low UDP performance which has also been reported on in Open-

Stack environments could be looked into and hopefully further explained.

There is also some work that could not be done yet:

e The performance of ipvlan (L2 mode) should be reevaluated after it has been

correctly patched to at least allow for reliable ARP support.

e The functionality and performance of different overlay networks could be (re)evaluated.

Weave is working on their fast datapath version, and the Socketplane team is
busy implementing new functions in libnetwork. There are numerous third par-
ties working on Docker networking plugins that can go live after the new plugin

system launch.

22

References

(10]

(11]

(12]

(13]

Ieee 802.1: 802.1gbg - edge virtual bridging. URL

http://www.ieee802.org/1/pages/802. 1bg.htmll [T0]
App container e github. URL https://github.com/appc.

Docker - build, ship and run any app, anywhere, . URL

https://www.docker.com/. m

socketplane/docker-ovs e github, . URL https://github.
com/socketplane/docker-ovs, E

iperf3 - iperf3 3.0.11 documentation.
software.es.net/iperf/, E

URL http://

[patch next 1/3] ipvlan: Defer multicast / broadcast pro-
cessing to a work-queue. URL https://www.mail-archive.
com/netdev40vger .kernel . org/msg63498.html. [L

Kvm. URL http://www.linux-kvm.org/.

docker/libcontainer o github, . URL https://github.com/
docker/libcontainer! [I]

docker/libnetwork,
libnetwork. E

URL https://github.com/docker/

Linux containers. URL https://linuxcontainers.org/.

Open container project. URL https://wuw.

opencontainers.org/. m

Openflow - open networking foundation, . URL https:

//www.opennetworking.org/sdn-resources/openflow. @

Open vswitch, . URL http://openvswitch.org/.

23

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Switching performance chaining ovs bridges — open
cloud blog, . URL http://www.opencloudblog.com/?p=386,

9l

Virtual ethernet device - openvz virtuozzo containers
wiki, . URL https://openvz.org/Virtual_Ethernet_device,

B

jpetazzo/pipework e github.
jpetazzo/pipework. @

URL https://github.com/
Project calico — a pure layer 3 approach to virtual net-
working. URL http://www.projectcalico.org/. m

Coreos is building a container runtime, rkt. URL https:
//coreos.com/blog/rocket/. m

Virtuozzo - odin.
virtuozzo/|

URL |http://www.odin.com/products/

Weaveworks e weave - all you need to connect, observe

and control your containers, . URL http://weave.works/,

BE

Weave fast datapath — all about weave, . URL http:
//blog.weave.works/2015/06/12/weave-fast-datapath/. m

C. Costache, O. Machidon, A. Mladin, F. Sandu, and
R. Bocu. Software-defined networking of linux contain-
ers. RoEduNet Conference 13th Edition: Networking in
Education and Research Joint Event RENAM 8th Con-
ference, 2014, 9 2014. doi: http://dx.doi.org/10.1109/
RoEduNet-RENAM.2014.6955310. [5]

Wes Felter, Alexandre Ferreira, Ram Rajamony, and
Juan Rubio. An updated performance comparison of
virtual machines and linux containers. IBM Research

Report RC25482 (AUS1407-001).

Nane Kratzke. About microservices, containers and their
underestimated impact on network performance. In Pro-
ceedings of CLOUD COMPUTING 2015 (6th. Interna-
tional Conference on Cloud Computing, GRIDS and Vir-

tualization), pages 165—-169, 2015.

Victor Marmol, Rohit Jnagal, and Tim Hockin.
Networking in containers and container clusters.
Proceedings of mnetdev 0.1, February 2015. URL

http://people.netfilter.org/pablo/netdev0.1/papers/
Networking-in-Containers-and-Container-Clusters.pdf. E

http://www.ieee802.org/1/pages/802.1bg.html
https://github.com/appc
https://www.docker.com/
https://github.com/socketplane/docker-ovs
https://github.com/socketplane/docker-ovs
http://software.es.net/iperf/
http://software.es.net/iperf/
https://www.mail-archive.com/netdev%40vger.kernel.org/msg63498.html
https://www.mail-archive.com/netdev%40vger.kernel.org/msg63498.html
http://www.linux-kvm.org/
https://github.com/docker/libcontainer
https://github.com/docker/libcontainer
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://linuxcontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://openvswitch.org/
http://www.opencloudblog.com/?p=386
https://openvz.org/Virtual_Ethernet_device
https://github.com/jpetazzo/pipework
https://github.com/jpetazzo/pipework
http://www.projectcalico.org/
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/
http://www.odin.com/products/virtuozzo/
http://www.odin.com/products/virtuozzo/
http://weave.works/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
http://people.netfilter.org/pablo/netdev0.1/papers/Networking-in-Containers-and-Container-Clusters.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Networking-in-Containers-and-Container-Clusters.pdf

Appendix A

server_ipvlan

#!/bin /bash

if [—z 7$1”]; then
echo ”Enter number of containers to be created:”
exit 1

fi

for ((i=1; i<=8$1; i++)); do
echo ”Creating server iperf3_s_$i listening on port 5201...”7
docker run —dit —net=none —name=iperf3_s_$i iperf/iperf
echo " Attaching pipework ipvlan interface 10.0.1.8$i/16”
sudo ./pipework/pipework enp5s0 —ipvlan iperf3_s_$i 10.0.1.

— $i/16
done

wait

for ((i=1; i <= $1; i++))

do
echo ”Running iperf3 on server iperf3_s_$i”
docker exec iperf3_s_$i iperf3 —s -D

done

server_macvlan

#!/bin /bash

if [—z 7$1”]; then
echo ”"Enter number of containers to be created:”
exit 1

fi

for ((i=1; i<=$1; i++)); do

24

APPENDIX A

echo 7 Creating server iperf3_s_$i listening on port 5201...7

docker run —dit —net=none —name=iperf3_s_$i iperf/iperf

echo ” Attaching pipework macvlan interface 10.0.1.%i/16”

sudo ./pipework/pipework enpb5s0 iperf3_s_$i 10.0.1.8$i/16
done

wait

for ((i=1; 1 <= $1; i++))

do
echo ”"Running iperf3 on server iperf3_s_$i”
docker exec iperf3_s_$i iperf3 —s -D

done

server_veth

#!/bin /bash
if [—z 7$1”]; then
echo ”Enter number of containers to be created:”
exit 1
fi
for ((i=1; i<=$1; i++)); do
echo ”Creating server iperf3_s_$i listening on port $((5200+
— $i))...”7
docker run —dit —name=iperf3_s_$i —p
— $i)) —p $((5200+%1)):$((5200+$i)
docker exec iperf3_s_$i iperf3 —s —p $
done

$((5200+8$i)):$((5200+
)/udp iperf/test
((5200+$i)) -D

25

Appendix B

client_ipvlan_tcp

#!/bin /bash
if [—z 77$177] | | [—z 77$277] ‘ | [—z 77$377] ; then

echo "run ./script <number of containers> <mtu> <number of
— times to run>"
exit 1
fi

for ((i=1; i <= $1; i++))

do
echo ”Creating client iperf3_c_$i 7
docker run —dit —net=none —name=iperf3_c_$i iperf/iperf
wait

echo ” Attaching pipework ipvlan interface 10.0.2.%i/16”
sudo ./pipework/pipework enp5s0 —ipvlan iperf3_c_$i 10.0.2.

— $i/16
done
wait
sleep 5

for ((j=1; j <= $3; j++)); do
for ((i=1; i <= $1; i++)); do
echo ”"Running iperf3 on client iperf3_c_$i for time $j...”7
docker exec iperf3_c_$i iperf3 —c 10.0.1.8%i —p 5201 —f m —
— 01 -M $2 > iperf3_$i.log &

done
wait
for ((i=1; i <= $1; i++)); do
cat iperf3_%i.log | awk 'FNR = 17 {print}’ | awk —F” 7 ’{

% print $5777 ’77,$677 ’77$7’77 ,777$8}7 >> ~/
< output_$1_$2_$3_$i.csv

26

APPENDIX A

cat iperf3_%i.log | awk 'FNR = 17 {print}’ | awk —F” 7 7{
< print $5,7 7,867 .,787,”7)7 88} >> 7/
< output_ipvlan_total_$1_$2_$3.csv
done
done

client_ipvlan_udp

#!/bin /bash
if [=z 781"] || [—2z 7%2” | || [—z 7$3”]; then

echo "run ./script <number of containers> <mtu> <number of
— times to run>"
exit 1
fi

for ((i=1; i <= $1; i++))

do
echo ”Creating client iperf3_c_$i 7
docker run —dit —net=none —mname=iperf3_c_$i iperf/iperf
wait

echo 7 Attaching pipework ipvlan interface 10.0.2.8$i/16”
sudo ./pipework/pipework enp5s0 —ipvlan iperf3_c_$i 10.0.2.

— $i/16
done
wait
sleep b

for ((j=1; j <= $3; j++)); do

for ((i=1; i <= $1; i++)); do
echo ”Running iperf3 on client iperf3_c_$i for time $j...’
docker exec iperf3_c_$i iperf3 —u —c 10.0.1.%1 —p 5201 —f

— m-01-M $2 —b 10000M > iperf3_$i.log &

done

wait

for ((i=1; i <= $1; i++)); do

cat iperf3_%i.log | awk 'FNR 17 {print}’ | awk —F” 7 7{
— print $5,7.,”.,%$6”7,7$7.,7,7,$8.,7,7%$9,7,” ,$10,” ,” ,$11
— 77,812} >> “/output_$1_$2_$3_%i.csv

cat iperf3_%$i.log | awk 'FNR = 17 {print}’ | awk —F” 7 ’{
N print $5 ’77 ’77 ,$67’ ’77$7’77 777 ,$8,” 777 $9’77 ’77 ’$10 ’77 ’77 7$11
< ,7.,7,812}’ >> “/output_ipvlan_total _$1_$2_$3.csv

done

27

APPENDIX A

’done

client_macvlan_tcp

#!/bin /bash

for ((i=1; i <= $1;
do

H [—z >7$37a

]; then

./script <number of containers> <mtu> <number of

if [—z 7817 | || [—2z 782”7 |
echo 7run
— times to run>”"
exit 1
fi

i+))

echo ”Creating client iperf3_c_$i 7

docker run —dit —net=none —name=iperf3_c_$i iperf/iperf
wait

echo 7 Attaching pipework macvlan interface 10.0.2.8%i/16”

sudo ./pipework/pipework enpb5s0 iperf3_c_$i 10.0.2.8$i/16
done
wait
sleep 5
for ((j=1; j <= $3; j++)); do
for ((i=1; i <= $1; i++)); do
echo I{unnlng iperf3 on client iperf3_c_$i for time $j...’
docker exec iperf3_c_$i iperf3 —c 10.0.1.8%i —p 5201 —f m —
—~ 01 -M $2 > iperf3_$i.log &
done
wait
for ((i=1; i <= $1; i++)); do
cat iperf3_%i.log | awk 'FNR = 17 {print}’ | awk —F” 7 ’{
< print $5,7 .7 ,867 787,77 ,$8} >> 7/
< output_$1_$2_$3_$i.csv
cat iperf3_$i.log | awk 'FNR 17 {print}’ | awk —F” 7 ’{
< print $5,7,7.,%$67.,787,”7 7,88}’ >> 7/
< output_macvlan_total_$1_$2_$3.csv
done
done

client_macvlan_udp

28

APPENDIX A

#!/bin /bash
if [—z 7817] || [-z 7"$2” | || [—z ”$3” |; then
echo "run ./script <number of containers> <mtu> <number of
— times to run>"

exit 1
fi

for ((i=1; i <= $1; i++))

do
echo 7 Creating client iperf3_c_$i 7
docker run —dit —net=none —name=iperf3_c_$i iperf/iperf
wait

echo ” Attaching pipework macvlan interface 10.0.2.%i/16”
sudo ./pipework/pipework enpb5s0 iperf3_c_$i 10.0.2.8$i/16
done
wait
sleep 5

for ((j=1; j <= 83; j++)); do
for ((i=1; i <= $1; i++)); do
echo ”Running iperf3 on client iperf3_c_$i for time $j...”7
docker exec iperf3_c_$i iperf3 —u —c 10.0.1.%i —p 5201 —f
> m -0 1 M $2 —b 10000M > iperf3 $i.log &

done
wait
for ((i=1; i <= 8$1; i++)); do
cat iperf3_%i.log | awk 'FNR = 17 {print}’ | awk —F” 7 7{
< print $5,”7 .7 ,%67,7$7,”)7 ,$8,7,7%9,” .7 ,$10,” ,” ,$11
— 7,7 ,812} >> “/output_-1_-2_$3_%i.csv
cat iperf3_%$i.log | awk 'FNR = 17 {print}’ | awk —F” 7 ’{
< print $5,”7.,7,%$6”7,7$7,”,7,$8,7,7%9,7,” ,$10,” ,” ,$11
— 7,7 ,812} >> “/output_macvlan_total _$1_$2 _$3.csv
done
done

client_veth_tcp

#!/bin /bash
if [—2z 781" | || [—2z 7%2” | || [—2z 7$3”]; then
echo ”"run ./script <number of containers> <mtu> <number of
— times to run>"

29

APPENDIX A

exit 1
fi

for ((i=1; 1 <= $1; i++))

do
echo 7 Creating client iperf3_c_$i ?
docker run —dit —name=iperf3_c_$i iperf/iperf
done
wait
sleep 5

for ((j=1; j <= $3; j++)); do
for ((i=1; i <= $1; i++)); do
echo ”Running iperf3 on client iperf3_c_$i for time $j...°
docker exec iperf3_c_$i iperf3 —c 10.0.0.1 —p $((5200+8%i))
—~ —fm-01-MS$2 > iperf3_$i.log &

)

done
wait
for ((i=1; i <= $1; i++)); do
cat iperf3_%i.log | awk 'FNR == 17 {print}’ | awk —F” 7 ’{
— print $5,7 .7 ,$67 787,77 [§8}7 >> 7/
< output_$1_$2_$3_$i.csv
cat iperf3_%$i.log | awk 'FNR = 17 {print}’ | awk —F” 7 ’{
— print $5,7 .7 ,$67,787,7,7 88} >> 7/
< output_veth_total_$1_%$2_$3 .csv
done
done

client_veth_udp

#!/bin /bash
if [=z 781"] || [—2z 7%2” | || [—z 7$3”]; then

echo "run ./script <number of containers> <mtu> <number of
— times to run>"
exit 1
fi

for ((i=1; i <= $1; i++))

do

echo ”Creating client iperf3_c_$i 7

docker run —dit —name=iperf3_c_$i iperf/iperf
done

30

APPENDIX A

wait
sleep b5

for ((j=1; j <= $3; j++)); do
for ((i=1; i <= $1; i++)); do
echo ”Running iperf3 on client iperf3_c_$i for time $j...
docker exec iperf3_c_$i iperf3 —u —c 10.0.0.1 —p $((5200+
— $i)) —fm -O 1 -M $2 —b 10000M > iperf3_$i.log &

done

kY

wait
for ((i=1; i <= $1; i++)); do

cat 1perf3,$1log ’ awk ’'FNR 17 {print}’ ’ awk —F” 7 7{
[N print $5,’7’77’$6?7’n$7’n’n7$87>7’n$9777’37’$107n’w’$11
— 7,7 ,812}7 >> “/output_$1_$2_$3_%i.csv

cat iperf3_%i.log | awk ’FNR 17 {print}’ | awk —F” 7 7{
N print $5,”,”,$6”,”$7,”,”,$8,”,”$9,”,”,$10,”,”,$11
— ,7,7,812}’ >> “/output_veth_total_$1_$2_$3.csv

done
done

31

Appendix C

pipework

#!/bin /sh

< xml)
set —e

case 7$1” in
—wait)
WAIT=1

esac

IFNAME=$1

IPVLAN=

IPVLAN=1
shift 1
fi

CONTAINER IFNAME=

if [7$2” =7—1”]; then
CONTAINER IFNAME=$3
shift 2

fi

HOST NAME_ARG=""
if [7§27 = "—H" |; then
HOST NAME ARG="-H $3”

if [7$2” = "——ipvlan” }; then

default value set further down if not set

32

This code should (try to) follow Google’s Shell Style Guide
(https://google—styleguide . googlecode.com/svn/trunk/shell.

here

APPENDIX A

shift 2
fi

GUESTNAME=$2
IPADDR=$3
MACADDR=$4

case "$MACADDR” in
«@Qs)
VLAN="$ {MACADDR#+@}”
VLAN="$ {VLAN/YQx }”
MACADDR="$ {MACADDR/(76Qx } "

1

*)

VLAN=
esac
[7SIPADDR” | [[["$WAIT” | [[{
echo ”Syntax:”
echo ”"pipework <hostinterface> [——ipvlan] [—1i

< containerinterface] <guest> <ipaddr>/<subnet >|
— @default_gateway] [macaddr][@vlan]”

echo "pipework <hostinterface> [——ipvlan]| [—1i

— containerinterface] <guest> dhcp [macaddr][@vlan]”
echo ”pipework —wait [—i containerinterface]”
exit 1

}

Succeed if the given utility is installed. Fail otherwise.
For explanations about ‘which‘ vs ‘type‘ vs ‘command‘, see:
http://stackoverflow.com/questions /592620/check—if —a—program
< —exists —from—a—bash—script /677212#677212

(Thanks to @chenhanxiao for pointing this out!)
installed () {

command —v ”$1” >/dev/null 2>&1
}

Google Styleguide says error messages should go to standard
<~ error.

warn () {
echo 73Q”7 >&2
}

33

APPENDIX A

die () {
status="%1"
shift
warn " $Q@”

exit " $status”

}

First step: determine type of first argument (bridge,
< physical interface...),
Unless "——wait” is set (then skip the whole section)
if [—z "$WAIT” |; then
if [—d 7/sys/class/net/$SIFNAME” |
then
if [—d ”/sys/class/net/$IFNAME/bridge” |; then
IFTYPE=bridge
BRTYPE=linux
elif installed ovs—vsctl && ovs—vsctl list —br|grep —q 7" ${
— IFNAME}$”; then
IFTYPE=bridge
BRTYPE=openvswitch
elif ["$(cat ”/sys/class/net/SIFNAME/type”)” —eq 32 |;
— then # Infiniband IPolB interface type 32
IFTYPE=ipoib
The IPoIB kernel module is fussy, set device name to
— ib0 if not overridden
CONTAINER IFNAME=$ { CONTAINERIFNAME: —ib0 }
else IFTYPE=phys
fi
else
case "SIFNAME” in
brx)
IFTYPE=bridge
BRTYPE=linux
OVS*)
if ! installed ovs—vsctl; then
die 1 "Need OVS installed on the system to create an
— ovs bridge”
fi
IFTYPE=bridge
BRTYPE=openvswitch

b

34

APPENDIX A

x) die 1 71 do not know how to setup interface SIFNAME.”
— 35
esac
fi
fi

Set the default container interface name to ethl if not
— already set
CONTAINER IFNAME=$ { CONTAINER IFNAME: —eth1 }

["SWAIT” | && {
while true; do
This first method works even without ‘ip‘ or ‘ifconfig ®
— installed ,
but doesn’t work on older kernels (e.g. CentOS 6.X). See
< #128.
grep —q '"1$’ 7 /sys/class/net /SCONTAINERIFNAME/ carrier”
— && break
This method hopefully works on those older kernels.
ip link 1s dev "$CONTAINERIFNAME” && break

sleep 1
done > /dev/null 2>&l1
exit 0

["SIFTYPE” = bridge | && [7"$BRTYPE” = linux | && ["$VLAN" |
— & {
die 1 "VLAN configuration currently unsupported for Linux
— bridge.”

["$SIFTYPE” = ipoib | && ["$MACADDR’ | && {
die 1 "MACADDR configuration unsupported for IPolB
— interfaces.”

}

Second step: find the guest (for now, we only support LXC
< containers)

while read _ mnt fstype options _; do
[7$fstype” != "cgroup” | && continue
echo ”$options” | grep —qw devices || continue

OGROUPMNT=$mnt
done < /proc/mounts

35

APPENDIX A

["$CGROUPMNT” | || {
die 1 ”Could not locate cgroup mount point.”
}

Try to find a cgroup matching exactly the provided name.
N=$(find ”$CGROUPMNI” —name "$GUESTNAME” | wc —1)
case 7"$N” in
0)
If we didn’t find anything, try to lookup the container
— with Docker.
if installed docker; then
RETRIES=3
while ["$RETRIES” —gt 0]; do
DOCKERPID=$ (docker inspect —format="{{ .State.Pid }}’
— "$GUESTNAME”)

[”$DOCKERPID” != 0] && break
sleep 1
RETRIES=$ ((RETRIES — 1))

done

["$DOCKERPID” = 0 | && {
die 1 ”Docker inspect returned invalid PID 0”

}
[”$DOCKERPID” = "<no value>" | && {
die 1 ”Container $GUESINAME not found, and unknown to
— Docker.”
}
else

die 1 ”Container $GUESTNAME not found, and Docker not
— 1installed.”

fi
1) true ;;
x) die 1 "Found more than one container matching $GUESTNAME
— .7y
esac
if [7"$IPADDR” = ”dhcp” |; then

Check for first available dhcp client
DHCP_CLIENT _LIST="udhcpc dhcpcd dhclient”
for CLIENT in $DHCP_CLIENT_LIST; do

36

APPENDIX A

installed "$CLIENT” && {
DHCP_CLIENT=$CLIENT
break

}

done
[—z 7$DHCP_CLIENT” | && {
die 1 ”You asked for DHCP; but no DHCP client could be
— found.”
}

else
Check if a subnet mask was provided.
case 7$IPADDR” in
/%) 1o
*)
warn ”"The IP address should include a netmask.”
die 1 ”"Maybe you meant $IPADDR/24 ?”
esac
Check if a gateway address was provided.
case 7$IPADDR” in
*@Qsx)
GATEWAY="$ {IPADDR#+Q}” GATEWAY="$ {GATEWAY//iQx }”
IPADDR="$ {IPADDRV(76Qx }
)
GATEWAY=

IR
esac

fi

if [”$DOCKERPID” |; then
NSPID=$DOCKERPID
else
NSPID=$ (head —m 1 ”$(find ”$CGROUPMNI” —name ”$GUESTNAME”
< head —m 1)/tasks”)
["$NSPID” | || {
die 1 ”Could not find a process inside container
< $GUESTNAME.”
}

fi

Check if an incompatible VLAN device already exists

37

APPENDIX A

["$IFTYPE” = phys | && | "$VLAN” | && [—d 7 /sys/class/net/
— $IFNAME.VLAN” | && {
ip —d link show ”$IFNAME.$VLAN” | grep —q ”vlan.xid $VLAN”
=[] {
die 1 7"$IFNAME.VLAN already exists but is not a VLAN
— device for tag $VLAN”

}
}

[! =d /var/run/netns | && mkdir —p /var/run/netns
rm —f 7 /var/run/netns/$NSPID”
In —s ”/proc/$NSPID/ns/net” ”/var/run/netns/$NSPID”

Check if we need to create a bridge.
["$IFTYPE” = bridge | && [! —d ”/sys/class/net /SIFNAME” | &&
=
["$BRTYPE’ = linux | && {
(ip link add dev "$IFNAME” type bridge > /dev/null 2>&1)
|| (bretl addbr "SIFNAME?)
ip link set 7$IFNAME” up

["$BRTYPE” = openvswitch | && {
ovs—vsctl add—br "$IFNAME”
}
}

MIU=$ (ip link show "$IFNAME” | awk ’{print $5})
If it’s a bridge, we need to create a veth pair
["SIFTYPE” = bridge | &% {
LOCAL IFNAME="v$ {CONTAINER I[FNAME} p1$ {NSPID}”
GUEST IFNAME="v$ {CONTAINER IFNAME} pg$ {NSPID }”
ip link add name "$LOCALIFNAME” mtu "$MTU” type veth peer
< name "$GUESTIFNAME” mtu "$MTU”
case "$BRTYPE” in
linux)
(ip link set ”"$LOCALIFNAME” master "$IFNAME” > /dev/
< null 2>&1) || (bretl addif "$SIFNAME” ”
- $LOCALIFNAME")
openvswitch)
ovs—vsctl add—port "$IFNAME” ”$LOCALIFNAME” ${VLAN:+tag
(_) :”$V]:JA_N”}

38

APPENDIX A

}
#
7
7
i

#
[

}

#
[

}

esac
ip link set "$LOCALIFNAME” up

Note: if no container interface name was specified , pipework
— will default to ib0

Note: no macvlan subinterface or ethernet bridge can be

— created against an

ipoib interface. Infiniband is not ethernet. ipoib is an IP
— layer for it.

To provide additional ipoib interfaces to containers use SR—
— IOV and pipework

to assign them.

"SIFTYPE” = ipoib | && {

GUEST IFNAME=SCONTAINER IFNAME

If it’s a physical interface, create a macvlan subinterface
"$IFTYPE” = phys | && {
["$VLAN” | && {

[! =d 7" /sys/class/net/${IFNAME}.${VLAN}” | && {

ip link add link 7$IFNAME” name ”$IFNAME.$VLAN” mtu ”
— $MTU” type vlan id ”$VLAN”

}

ip link set "$IFNAME” up

IFNAME=SIFNAME . $VLAN

1
GUEST IFNAME=ph$NSPID$CONTAINER IFNAME

["$IPVLAN” | && {
ip link add link 7SIFNAME” ”$GUESTIFNAME” mtu "$MTU” type

— ipvlan mode 13

[| "$IPVLAN” | && {
ip link add link "$IFNAME” dev ”$GUESTIFNAME” mtu "$MTU”

— type macvlan mode bridge
ip link set 7$IFNAME” up

}

ip link set "$GUESTIFNAME” netns ”$NSPID”
ip netns exec "$NSPID” ip link set "$GUESTIFNAME” name ”

— $CONTAINER IFNAME”

39

APPENDIX A

["$MACADDR” | && ip netns exec "$NSPID” ip link set dev ”
— $CONTAINERIFNAME” address "$MACADDR”
if | "SIPADDR” = ”dhcp” |
then
["$DHCP_CLIENT” = "udhcpc” | && ip netns exec ”"$NSPID” ”

— $DHCP_CLIENT” —qi ”"$CONTAINERIFNAME” —x ”hostname:
— $GUESTNAME”
if [?$DHCP_CLIENT” = ”dhclient”]; then
kill dhclient after get ip address to prevent device be
— used after container close
ip netns exec ”$NSPID” ”"$DHCP_CLIENT” $HOST NAMEARG —pf
< 7 /var/run/dhclient .3NSPID. pid” ”$CONTAINER IFNAME”
kill 7$(cat ”/var/run/dhclient .$NSPID. pid”)”
rm " /var/run/dhclient .$NSPID. pid”
fi
["$DHCP_CLIENT” = "dhcpcd” | && ip netns exec ”"$NSPID” ”
< $DHCP_CLIENT” —q "$CONTAINERIFNAME” —h "$GUESTNAME”
else
ip netns exec "$NSPID” ip addr add "$IPADDR” dev ”
< $CONTAINER_IFNAME”
["$GATEWAY” | && {
ip netns exec "$NSPID” ip route delete default >/dev/null
— 2>&1 && true

}
ip netns exec "$NSPID” ip link set "$CONTAINERIFNAME” up

["$GATEWAY” | && {
ip netns exec ”"$NSPID” ip route get "$GATEWAY” >/dev/null

— 2>&1 || \
ip netns exec ”"$NSPID” ip route add "$GATEWAY/32” dev ”

— $CONTAINERIFNAME”
ip netns exec ”"$NSPID” ip route replace default via

— $GATEWAY”

9

}
fi

Give our ARP neighbors a nudge about the new interface

if installed arping; then
IPADDR=$ (echo 7”$IPADDR” | cut —d/ —f1)
ip netns exec "$NSPID” arping —c 1 —A —I 7$CONTAINER IFNAME”

< 7$IPADDR” > /dev/null 2>&1 || true

else
echo ”Warning: arping not found; interface may not be

— immediately reachable”

40

APPENDIX A

fi

Remove NSPID to avoid ‘ip netns‘ catch it.
rm —f 7 /var/run/netns/$NSPID”

vim: set tabstop=2 shiftwidth=2 softtabstop=2 expandtab

41

	Acronyms
	1 Introduction
	2 Background
	2.1 Container technology
	2.1.1 Namespaces
	2.1.2 cgroups

	2.2 Working with Docker
	2.3 Related work

	3 Container networking
	3.1 Overlay networks
	3.1.1 Weave
	3.1.2 Project Calico
	3.1.3 Socketplane and libnetwork

	3.2 Kernel modules
	3.2.1 veth
	3.2.2 openvswitch
	3.2.3 macvlan
	3.2.4 ipvlan

	4 Experimental setup
	4.1 Equipment
	4.2 Tests
	4.2.1 Local testing
	4.2.2 Switched testing

	4.3 Issues

	5 Performance evaluation
	5.1 Local testing
	5.1.1 TCP
	5.1.2 UDP

	5.2 Switched testing
	5.2.1 TCP
	5.2.2 UDP

	6 Conclusion
	6.1 Future work

	References

