Machine Detectable Network
Behavioural Commonalities
for Exploits & Malware

University of Amsterdam Alexandros Stavroulakis
MSc System & Network Engineering
Research Project |l

What is this about?

Automatic generation of malicious code by the penetration testing tool, Armitage,
which is a GUI of the Metasploit Framework

More specifically

When it is used by inexperienced users (hackers) and/or hobbyists

What is the problem?

A large part of ad-hoc created malware is generated using Armitage

It is possible to generate a new virus / trojan which will be hardly detectable by AV
software

Why are we researching this?

To determine whether this automated generation procedure, produces code that
has predictable network behaviour,

Such as packet sizes, rhythm of packets, sequence of ports, etc

If Armitage generated malware could be detected by its network behaviour
characteristics, then malware detection solutions could take a major step forward

Which leads us to the Research Question

Is it possible to detect the presence of malicious software, generated by Armitage,
by identifying its network behaviour?

What is the plan?

Set up a secure “victim” environment (roll-back after each trial)

. Windows 7 SP1 Virtual Machine
[I. Kali Linux Virtual Machine

Create a feature plan of malware generation using Armitage

Capture and analyze traffic

How is malware generated?

Malware == Metasploit
Payloads

LHOST and LPORT are set
for the attacking side

Figure out a way to infect
the victim with executable

Armitage

Armitage Wiew Hosts Attacks Workspaces Help

|| bind_norx_tep A

|| bind_tcp

|| bind_tcp_red

|| bind_tcp_uuid

|| find_tag

reverse_hop_http

reverse_http

reverse_http_prowy _pstore

reverse_https _

|| reverse_https |
reverse_ipvé t

reverse_nons_{

i N

192.168.56. 101

windows/meterpreter/reverse_tcp B C I -]

91 €1

Windows Meterpreter (Reflective Injection), Reverse TCP Stager

Inject the meterpreter server DLL via the Reflective Dll Injection payload (staged). Connect
back to the attacker

reverse_ord_tc

| option 4| value

| Encoder ®B6/shikata_ga_nai

E EXITFUNC process
lterations 3

0 KeepTemplateWorking
scanned 1 of 1 hosiEFitersy

LFORT
Template +

192.168.56.102
4424

output: | exe -]

|| Show advanced options

| Launch |

xiliary module running as I)aEquu:nun(I job
2.168.56.101:445 is running Windows 7 Professional SP1 (build:7601) (name:ALEX-PC) (domain:WORKGROUP)
complete)

msf auxiliar

How is malware generated?

Multi/Handler is used by all
. . y windows/meterpreter/reverse_tcp @ 0
MetaSpIOIt Payloads In Order tO Windows Meterpreter (Reflective Injection), Reverse TCP Stager
establish a connection between Inject the meterpreter server DLL via the Reflective DIl Injection payload
(staged). Connect back to the attacker
the victim and the attacker .
Option | Value |
CATTELITL. HTULESS i
lterations 3
. e KeepTemplateWorking h
It creates a listener waiting for T RS TES
o g . 4444
malware on the victim side to M lr:;’
connect output: | multithandler |

[| show advanced options

Launch

| hitp://192.168.56.102/backdoor.exe +| &[4] x][B sing

? :) I3| Suggested Sites v @ | Web Slice Gallery v
l \nd then ° Ubuntu Default Page: It works &~ B - @ v Page

¥ Ubuntu Logo

=2

Apache2 Ubuntu Default Page

Once the executable runs and a e
0% of backdoor.exe from 192,168,56.102 Completed (=] ®]=]

. . . . y s
This is the default welcom 2 server after
Session 1S eStabIIShed’ Armltage installation on Ubuntu sys (& B 0 n which the Ubuntu
gt Y~ File Download - Security Warning i
. . . Apache packaging is deriy HTTP server installed at
S representatlon Of th e Vi Ct' m this site is working propel | Do you want to run or save this file? tml/index.html)
before continuing to ope
=== Name: backdoor.exe 2
Chan es If you are a normal user B S this probably means
g that the site is currently u ‘_/ Type: Application, 72.0k8 lease contact the
site's administrator. o U GRshet
| | fn | [Sve | [Gonesl |
Ubuntu's Apache2 default figuration, and splitinto
several files optimized fo is fully documented
in /usr/share/doc/apa (i Wil fls from the Intemet can be useful this fie type can mentation.
Documentation for the we| k'q patentially ham your computer. i you do not trust the source, donat Hiha apache2-doc
3 =" un or save this software. What's the risk?
package was installed on {

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows:

ot al e

Armitage

What are we looking into?

Hobbyists and inexperienced users are more probable to look into tutorials, easy-
to-implement attacks that are sure to work

The most common attacks make use of the “reverse_tcp” and “reverse_http(s)”
payloads

They connect back to the attacker and set up a communication according to their
title

The presentation will focus on the above payloads

What patterns are we looking for?

Basically... anything that can show any kind of predictability in network behaviour

What patterns are we looking for?

Basically... anything that can show any kind of predictability in network behaviour

What patterns are we looking for?

Basically... anything that can show any kind of predictability in network behaviour

What patterns are we looking for?

Basically... anything that can show any kind of predictability in network behaviour

What did we find? reverse_tcp

Transmission of packets Randomly chosen port 49163 used in
every Y60 seconds every test
5 packets per transmission Same packet length, in order, per
(652 Bytes per transmission) transmission
No. Time Source Destination Protocol Length Info
1 0.000000 192.168.56.102 192.168.56.101 TCP 208 4444 — 49163 |[PSH, ACK] Seq=1 Ack=1 Win=636 Len=154
4 08.053479 192.168.56.11 192.168.56.162 TEP: 128 49163 — 4444 |[PSH, ACK] Seg=1 Ack=155 Win=256 Len=74
o 8.853580 192.168.56.102 192.168.56.101 TCP 54 4444 — 49163 [[ACK] Seq=155 Ack=75 Win=636 Len=0
6 0.853753 192.168.56.11 192.168.56.182 TCPR 208 49163 — 4444 |[PSH, ACK] Seq=75 Ack=155 Win=256 Len=154
7 8.853762 192.168.56.1082 192.168.56.1601 TCP 54 4444 — 49163 JIACK] Seqg=155 Ack=229 Win=639 lLen=0
46 66.067485 192.168.56.182 192.168.56.101 TEP: 208 4444 — 49163 |[[PSH, ACK] Seq=155 Ack=229 Win=639 Len=154
47 60.1157606 192.168.56.11 192.168.56.102 TCP 128 49163 — 4444 |[PSH, ACK] Seq=229 Ack=389 Win=255 Len=74
48 66.115797 192.168.56.182 192.168.56.1601 TCPR 54 4444 — 49163 J[ACK] Seq=309 Ack=303 Win=639 Len=@
49 66.116169 192.168.56.161 192.168.56.1602 TEP 208 49163 — 4444 |[PSH, ACK] Seg=383 Ack=389 Win=255 Len=154
56 66.116126 192.168.56.1682 192.168.56.101 TEP 54 4444 — 49163 J[ACK] Seq=309 Ack=457 Win=642 Len=@
FSN, ACR] Seq=300 ACK=257 Win=64dZ Len-
83 128.412497 192.168.56.11 192.168.56.182 TCPR 128 49163 — 4444 |[PSH, ACK] Seq=457 Ack=463 Win=254 Len=74
84 120.412521 192.168.56.1682 192.168.56.1601 TEP 54 4444 — 49163 J[ACK] Seq=463 Ack=531 Win=642 Len=0
85 1208.412718 192.168.56.11 192.168.56.162 TEP: 208 49163 — 4444 |[PSH, ACK] Seq=531 Ack=463 Win=254 Len=154
86 120.412715 192.168.56.102 192.168.56.101 _ TCP Loddaaa — 22183 J[ACK] Seq=463 Ack=685 Win=644 Len=@

What did we find?

When the session closes,
the malware exits and has
no network presence

The moment the session
ends, each test showed a
large spike in traffic (10 -
20 packets)

Packets/s

18

15

6

w

O

reverse_tcp

Wireshark 10 Graphs: reverse_tcp_capture_stopped

1050

Time (s)

1400

1?50

2100

What did we find? reverse_http(s)

Packet transmission increases from Randomly chosen port 49164 used

every V4,5 to 10 seconds in every test

5 packets per transmission (PDU Same packet length, in order, per

packet size varies per test, 293 - 364) transmission

No. v Time Source Destination Protocol Lenﬂth Info
C 25 3.625116 192.168.56.101 192.168.56.102 | ICP 293|[TCP segment of a reassembled PDU]

26 3.625141 192.168.56.161 192.168.56.182 HTTP 60JPOST /01kfigMWT-QaiRuITCsX5Ajy5Q8EWSP/ HTTP/1.1
27 3.625276 192.168.56.162 192.168.56.1601 TEP 5414444 - 49164 [ACK] Seq=1 Ack=244 Win=182 Len=0
28 3.626047 192.168.56.162 192.168.56.161 HTTP 172HTTP/1.1 200 OK
29 3.827921 192.168.56.161 192.168.56.182 TCP 60]49164 — 4444 [ACK] Seg=244 Ack=119 Win=251 Len=@
44 §.031380 192.168.56.1681 192.168.56.182 TCP 293][TCP segment of a reassembled PDU]
45 8.831407 192.168.56.101 192.168.56.102 HTTP 60JPOST /OlkfigMWT-QailRuITCsXSAjySQBEWSP/ HTTP/1.1
46 8.831523 192.168.56.1682 192.168.56.1601 TCP 5414444 — 49164 [ACK] Seq=119 Ack=487 Win=182 Len=0
47 8.032314 192.168.56.162 192.168.56.1601 HTTP 172HTTP/1.1 260 DK
48 8.249758 192.168.56.1681 192.168.56.182 TCP 60J49164 — 4444 [ACK] Seg=487 Ack=237 Win=256 Len=0
A9 12.531739 192.168.56.161 192.168.56.182 TCP 293)[TCP segment of a reassembled PDU]
50 12.531763 192.168.56.161 192.168.56.182 HTTP 60JPOST /OlkfiqMWT-QaiRuITCsXSA]ySQB8EWSP/ HTTP/1.1
51 12.531964 192.168.56.162 192.168.56.161 TCP 5414444 - 49164 [ACK] Seq=237 Ack=73P Win=182 Len=0
52 12.532579 192.168.56.162 192.168.56.181 HTTP 172 HTTP/1.1 208 0K
03 12.734112 192.168.56.161 192.168.56.182 TCP 60]49164 — 4444 [ACK] Seq=730 Ack=355 Win=256 Len=0

What did we find?

When the session closes,
the malware exits and
has no network presence

The moment the session

ends, each test showed a§ «|

large spike in traffic (+9
packets)

reverse_http(s)

9F

751

6|

3l

151

or
I

Wireshark 10 Graphs: reverse_http_capture_3_stopped

i L
7O

1 ! ! 1
0 1050 1400 1750 2100

Time (s)

What about Evasion Techniques?

Antivirus evasion
Encode the generated payload multiple times to increase obfuscation

IDS/IPS evasion

Changing the transport type of the payload, e.g. from TCP to HTTPS

What does it all mean?

There is evidence to suggest the existence of patterns in the network behaviour of
certain automatically generated malware

Not all malware behaves the same

Metasploit is an ever changing platform, constantly updating

What is next?

The next step would be to automate this procedure

In a way that false positive occurences would be kept to a minimum

Analyze other frequently used payloads/exploits for multiple platforms

What's up?

Thank you for your attention. Questions?

