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BitTorrent
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Protocol for distributing files using peer-to-peer connections.

- BitTorrent Swarm

- Seeders

- Leechers

- Trackers

- Tracker Servers

- Distributed Hash Tables

- Repository Servers

- Torrents

- Magnet URI’s

Transport Protocol: TCP / uTP

Introduction

Source: Enhanced BitTorrent Simulation using Omnet++,
IEEE, 2020



Advantages of BitTorrent
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- Every downloader is also an uploader

- Uses tit-for-tat principle for leeching

- No central point of failure

Introduction

Disadvantages of BitTorrent
- Torrent can’t complete if all seeds go offline and all leechers require a specific piece.

- IP address is exposed to the tracker and peers

- Splits files into pieces

- Downloads rarest piece first

- Takes action with slow peers



WebTorrent
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First torrent client that works in a browser.

- Completely written in JavaScript

- WebRTC as transport protocol

- Custom tracker implementation, ICE

- Once peers connected, same as BitTorrent

Use Cases

- File sharing & streaming

- Peer-assisted delivery

- Hybrid clients as bridge to “normal” BitTorrent Transport Protocol: WebRTC (on top TCP/UDP)

Introduction

Source: WebTorrent.io, 2020



Research Questions
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Main Research Question

Can WebTorrent be abused to have web page visitors involuntarily participate in peer-to-peer networks?

Introduction

Sub Questions

- Which WebTorrent specific features can be abused?

- In which ways could WebTorrent be useful to an adversary?

- What can be done to prevent involuntary browser-based torrenting?

- Can we determine if this is an already established and widely used tactic?



Importance
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- WebTorrent is attracting interest

- No additional installations are required for its use

- Security implications are unknown

Introduction

Research Goals
- Determine whether involuntary browser-based torrenting is possible

- Usefulness for a potential adversary

- Detection and prevention methods

- Determine if it is a widely used and established tactic



Current Research
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- Security Architecture of WebRTC (IETF)

- WebRTC Data Channels (HTML5Rocks)

- OakStreaming (Koren & Klamma)

Related Work

Shortcomings
- No public research focused on WebTorrent security



 

Methodology
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Lab Setup
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Virtual Machine 1: 

● OS: Kali Linux

● Browsers: Mozilla Firefox 76.0 & 81.0

● Purpose: PoC Development, Web 

Server, Debugging & Traffic analysis

Methodology

Virtual Machine 2: 

● OS: Windows 10

● Browser: Google Chrome 84.0

● Purpose: WebTorrent Client Testing

Mobile Device: 

● OS: Android 9

● Browser: Google Chrome 85.0

● Purpose: WebTorrent Client Testing



Involuntary File-Sharing with WebTorrent
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Methodology

● Determine the relevant API methods of WebTorrent

● Write custom WebTorrent clients

○ WebTorrent Uploader

○ WebTorrent Downloader

● Debug and test custom client across various different devices

● Write, debug and test proof-of-concept scripts

● Determine attack vectors and the usefulness



Detection and Prevention
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Methodology

● Search for existing methods

○ Related work

○ Blog posts

● Source code

○ Search for static values

○ Search for unique patterns

● Web Developer Tools

○ JavaScript console to analyse the 

Window interface

○ Javascript Debugger to analyse 

WebTorrent code execution

● WebRTC Internals

○ Trace API calls

○ View connection details

● WireShark

○ Inspect traffic

● Mozilla MDN Web Docs

○ Analyse relevant API’s

● Proof-of-concepts

○ Userscripts

○ Browser extensions



Searching in the Wild

12

Methodology

● PublicWWW - Source Code Search Engine

○ Search for code unique to WebTorrent

○ Search using regular expressions

○ Using over a half billion indexed pages

○ Export results for later analysis

   Subscription was kindly provided by the PublicWWW team!

Source: PublicWWW, 2020



 

Results
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Involuntary File-Sharing with WebTorrent
Involuntary browser-based torrenting is possible!

Attack Vectors

○ Malicious / Compromised Web Server e.g. XSS

○ Compromised externally hosted JavaScript library

○ Malicious browser extension
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Results



Usefulness
Usefulness for an adversary

● Resource Hijacking

○ File sharing

○ Peer assisted-delivery

● Repudiation

○ Let users unknowingly download files
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Results



Detection & Prevention
● Browser

○ Detect and block WebTorrent usage using the Window interface

○ Blacklist URL’s of common trackers and common names of the library

○ Filter all responses containing JavaScript files (may break some pages)

○ Disable WebRTC, JavaScript or WebSockets
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Results



Detection & Prevention
● Network

○ Block DNS queries to trackers, ICE servers, library hosting domains

○ Deny access to trackers, ICE servers, library hosting domains

● Compromised Web Server

○ Use Indicators of Compromise

○ Check integrity of included remote library using Subresource Integrity (SRI)
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Results



Searching in the Wild

● PublicWWW - Results

○ Searched for script includes, unique patterns, obfuscated unique patterns

○ 307 pages indexed containing “webtorrent.min.js”

○ Other queries did not result in much

Nonetheless, results still useful for testing detection proof-of-concepts.
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Results



Proof-of-Concepts
Custom Clients

○ Involuntary Stealth Downloader

○ Involuntary Stealth Seeder

○ JavaScript payload to be used for external loading e.g. XSS

Custom Mozilla Firefox Extensions

○ WebTorrent Blocker

○ Background Seeder

○ WebTorrent Filter

Other

○ Greasemonkey WebTorrent Blocker script

○ uBlock Origin Static filter list
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Repository 
https://github.com/alexander-47u/

Involuntary-WebTorrent-Test

PoCs available at 

GitHub

Results



 

Discussion
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Discussion

● Involuntary browser-based torrenting is possible!

● The browser and WebTorrent library do not ask for permission

● The findings could assist examiners in developing counter-measures

● Proof-of-concept for detection and prevention is functional

● Not a widely used and established tactic
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Discussion



Limitations

● Stealth Webtorrent downloads stop when page reloads/changes

● Browsers have limited cache for downloads

● WebTorrent Blocker extension depends on common names of objects
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Discussion



Limitations

● Background Seeder extension requires initial seeder

● WebTorrent Filter slows down and sometimes breaks page
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Discussion



Recommendations

● .getUserMedia() prompts user for 

permission (camera, microphone)

● No such method or permission 

exists for WebRTC
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Discussion



 

Conclusion

25



Conclusion
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Can WebTorrent be abused to have web page visitors involuntarily participate in peer-to-peer networks?

● Yes, although likely only useful for resource highjacking



Future Work

● Find more ways to use Involuntary WebTorrenting

● Investigate feasibility of different real-world attacks 

● Methods for achieving persistence
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Questions?
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ICE Protocol
Technique used to find ways for peers to communicate as directly as possible.

● Used for NAT traversal

○ Session Traversal Utilities for NAT (STUN)

○ Traversal Using Relays around NAT (TURN)

■ Relay Extensions to STUN
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Backup Slides



ICE Protocol (P2P Behind NAT)
1. STUN binding
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Source: AnyConnect, 2020

Backup Slides



ICE Protocol (P2P Behind NAT)
2. Caller TURN allocation 
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
3. Caller sends invite 
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
4. Callee TURN allocation  
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
5. Callee answers OK  
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
6. Exchange candidate IP addresses   
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
7. ICE check for P2P connection   
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Source: AnyConnect, 2020
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ICE Protocol (P2P Behind NAT)
8. If P2P unsuccessful, make relay connection    
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Source: AnyConnect, 2020

Backup Slides



BitTorrent DDoS Applicable?
Vulnerabilities that could be leveraged for DDoS were researched in 2015 in

- Micro Transport Protocol (uTP): No uses, WebRTC and then TCP or UDP

- Distributed Hash Table (DHT): Not supported in the browser version of WebTorrent

- Message Stream Encryption (MSE): Not applicable

- BitTorrent Sync (BTSync): Not applicable

DDoS exploits do not apply to WebTorrent!

Research: P2P File-Sharing in Hell: Exploiting BitTorrent Vulnerabilities to Launch Distributed 

Reflective DoS Attacks 38
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STUN Amplification Attack
 Simple Traversal of UDP through NAT (STUN) amplification attack

1. STUN connectivity checks are directed to the target

2. Attacker proceeds by generating an offer with a large number of candidates

3. The peer endpoint, after receiving the offers, performs connectivity checks with all the candidates

4. Generate a significant volume of data flow with STUN connectivity checks

Can be mitigated by limiting the total number of candidates that are sent in an offer and response
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Source: Microsoft Docs, 2020
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