
Involuntary Browser-Based
Torrenting

Author:
Alexander Bode

Supervisor:
Jan Freudenreich

Course:
Research Project 2

BitTorrent

2

Protocol for distributing files using peer-to-peer connections.

- BitTorrent Swarm

- Seeders

- Leechers

- Trackers

- Tracker Servers

- Distributed Hash Tables

- Repository Servers

- Torrents

- Magnet URI’s

Transport Protocol: TCP / uTP

Introduction

Source: Enhanced BitTorrent Simulation using Omnet++,
IEEE, 2020

Advantages of BitTorrent

3

- Every downloader is also an uploader

- Uses tit-for-tat principle for leeching

- No central point of failure

Introduction

Disadvantages of BitTorrent
- Torrent can’t complete if all seeds go offline and all leechers require a specific piece.

- IP address is exposed to the tracker and peers

- Splits files into pieces

- Downloads rarest piece first

- Takes action with slow peers

WebTorrent

4

First torrent client that works in a browser.

- Completely written in JavaScript

- WebRTC as transport protocol

- Custom tracker implementation, ICE

- Once peers connected, same as BitTorrent

Use Cases

- File sharing & streaming

- Peer-assisted delivery

- Hybrid clients as bridge to “normal” BitTorrent Transport Protocol: WebRTC (on top TCP/UDP)

Introduction

Source: WebTorrent.io, 2020

Research Questions

5

Main Research Question

Can WebTorrent be abused to have web page visitors involuntarily participate in peer-to-peer networks?

Introduction

Sub Questions

- Which WebTorrent specific features can be abused?

- In which ways could WebTorrent be useful to an adversary?

- What can be done to prevent involuntary browser-based torrenting?

- Can we determine if this is an already established and widely used tactic?

Importance

6

- WebTorrent is attracting interest

- No additional installations are required for its use

- Security implications are unknown

Introduction

Research Goals
- Determine whether involuntary browser-based torrenting is possible

- Usefulness for a potential adversary

- Detection and prevention methods

- Determine if it is a widely used and established tactic

Current Research

7

- Security Architecture of WebRTC (IETF)

- WebRTC Data Channels (HTML5Rocks)

- OakStreaming (Koren & Klamma)

Related Work

Shortcomings
- No public research focused on WebTorrent security

Methodology

8

Lab Setup

9

Virtual Machine 1:

● OS: Kali Linux

● Browsers: Mozilla Firefox 76.0 & 81.0

● Purpose: PoC Development, Web

Server, Debugging & Traffic analysis

Methodology

Virtual Machine 2:

● OS: Windows 10

● Browser: Google Chrome 84.0

● Purpose: WebTorrent Client Testing

Mobile Device:

● OS: Android 9

● Browser: Google Chrome 85.0

● Purpose: WebTorrent Client Testing

Involuntary File-Sharing with WebTorrent

10

Methodology

● Determine the relevant API methods of WebTorrent

● Write custom WebTorrent clients

○ WebTorrent Uploader

○ WebTorrent Downloader

● Debug and test custom client across various different devices

● Write, debug and test proof-of-concept scripts

● Determine attack vectors and the usefulness

Detection and Prevention

11

Methodology

● Search for existing methods

○ Related work

○ Blog posts

● Source code

○ Search for static values

○ Search for unique patterns

● Web Developer Tools

○ JavaScript console to analyse the

Window interface

○ Javascript Debugger to analyse

WebTorrent code execution

● WebRTC Internals

○ Trace API calls

○ View connection details

● WireShark

○ Inspect traffic

● Mozilla MDN Web Docs

○ Analyse relevant API’s

● Proof-of-concepts

○ Userscripts

○ Browser extensions

Searching in the Wild

12

Methodology

● PublicWWW - Source Code Search Engine

○ Search for code unique to WebTorrent

○ Search using regular expressions

○ Using over a half billion indexed pages

○ Export results for later analysis

 Subscription was kindly provided by the PublicWWW team!

Source: PublicWWW, 2020

Results

13

Involuntary File-Sharing with WebTorrent
Involuntary browser-based torrenting is possible!

Attack Vectors

○ Malicious / Compromised Web Server e.g. XSS

○ Compromised externally hosted JavaScript library

○ Malicious browser extension

14

Results

Usefulness
Usefulness for an adversary

● Resource Hijacking

○ File sharing

○ Peer assisted-delivery

● Repudiation

○ Let users unknowingly download files

15

Results

Detection & Prevention
● Browser

○ Detect and block WebTorrent usage using the Window interface

○ Blacklist URL’s of common trackers and common names of the library

○ Filter all responses containing JavaScript files (may break some pages)

○ Disable WebRTC, JavaScript or WebSockets

16

Results

Detection & Prevention
● Network

○ Block DNS queries to trackers, ICE servers, library hosting domains

○ Deny access to trackers, ICE servers, library hosting domains

● Compromised Web Server

○ Use Indicators of Compromise

○ Check integrity of included remote library using Subresource Integrity (SRI)

17

Results

Searching in the Wild

● PublicWWW - Results

○ Searched for script includes, unique patterns, obfuscated unique patterns

○ 307 pages indexed containing “webtorrent.min.js”

○ Other queries did not result in much

Nonetheless, results still useful for testing detection proof-of-concepts.

18

Results

Proof-of-Concepts
Custom Clients

○ Involuntary Stealth Downloader

○ Involuntary Stealth Seeder

○ JavaScript payload to be used for external loading e.g. XSS

Custom Mozilla Firefox Extensions

○ WebTorrent Blocker

○ Background Seeder

○ WebTorrent Filter

Other

○ Greasemonkey WebTorrent Blocker script

○ uBlock Origin Static filter list

19

Repository
https://github.com/alexander-47u/

Involuntary-WebTorrent-Test

PoCs available at

GitHub

Results

Discussion

20

Discussion

● Involuntary browser-based torrenting is possible!

● The browser and WebTorrent library do not ask for permission

● The findings could assist examiners in developing counter-measures

● Proof-of-concept for detection and prevention is functional

● Not a widely used and established tactic

21

Discussion

Limitations

● Stealth Webtorrent downloads stop when page reloads/changes

● Browsers have limited cache for downloads

● WebTorrent Blocker extension depends on common names of objects

22

Discussion

Limitations

● Background Seeder extension requires initial seeder

● WebTorrent Filter slows down and sometimes breaks page

23

Discussion

Recommendations

● .getUserMedia() prompts user for

permission (camera, microphone)

● No such method or permission

exists for WebRTC

24

Discussion

Conclusion

25

Conclusion

26

Can WebTorrent be abused to have web page visitors involuntarily participate in peer-to-peer networks?

● Yes, although likely only useful for resource highjacking

Future Work

● Find more ways to use Involuntary WebTorrenting

● Investigate feasibility of different real-world attacks

● Methods for achieving persistence

27

Questions?

28

ICE Protocol
Technique used to find ways for peers to communicate as directly as possible.

● Used for NAT traversal

○ Session Traversal Utilities for NAT (STUN)

○ Traversal Using Relays around NAT (TURN)

■ Relay Extensions to STUN

29

Backup Slides

ICE Protocol (P2P Behind NAT)
1. STUN binding

30

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
2. Caller TURN allocation

31

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
3. Caller sends invite

32

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
4. Callee TURN allocation

33

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
5. Callee answers OK

34

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
6. Exchange candidate IP addresses

35

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
7. ICE check for P2P connection

36

Source: AnyConnect, 2020

Backup Slides

ICE Protocol (P2P Behind NAT)
8. If P2P unsuccessful, make relay connection

37

Source: AnyConnect, 2020

Backup Slides

BitTorrent DDoS Applicable?
Vulnerabilities that could be leveraged for DDoS were researched in 2015 in

- Micro Transport Protocol (uTP): No uses, WebRTC and then TCP or UDP

- Distributed Hash Table (DHT): Not supported in the browser version of WebTorrent

- Message Stream Encryption (MSE): Not applicable

- BitTorrent Sync (BTSync): Not applicable

DDoS exploits do not apply to WebTorrent!

Research: P2P File-Sharing in Hell: Exploiting BitTorrent Vulnerabilities to Launch Distributed

Reflective DoS Attacks 38

Backup Slides

STUN Amplification Attack
 Simple Traversal of UDP through NAT (STUN) amplification attack

1. STUN connectivity checks are directed to the target

2. Attacker proceeds by generating an offer with a large number of candidates

3. The peer endpoint, after receiving the offers, performs connectivity checks with all the candidates

4. Generate a significant volume of data flow with STUN connectivity checks

Can be mitigated by limiting the total number of candidates that are sent in an offer and response

39

Source: Microsoft Docs, 2020

Backup Slides

